Fujitsu Harnesses Quantum-Inspired Digital Annealer Technology

July 22, 2019

KAWASAKI, Japan, July 22, 2019 — Fujitsu Laboratories, Ltd. has shown the capability of the Digital Annealer, Fujitsu’s computational architecture inspired by quantum phenomena that rapidly solves combinatorial optimization problems, to maximize the performance of magnetic devices essential for renewable energy harvesting and other uses. The application of Fujitsu’s next-generation architecture allows for the nearly instantaneous calculation of the optimal arrangement of multiple planar (2D) magnets to maximize the strength of the magnetic field in a device.

Many magnetic devices used for environmental power generation create magnetic flux through the arrangement of a large number of small magnets. The optimal planar (2D) arrangement for maximizing power generation efficiency remains difficult to calculate due to the enormous number of potential combinations of magnet arrangements, however. To overcome this challenge, Fujitsu has developed a technology that utilizes its Digital Annealer to calculate in a matter of seconds how to arrange each individual magnet to achieve maximum magnetic flux density, delivering an efficiency gain of 16%.

This technological breakthrough now makes it possible to quickly calculate the optimal design for magnetic devices with significantly higher power generation efficiency, and will ultimately contribute to the spread of power generation devices that utilize renewable energy such as energy harvesting devices.

This technology was developed in collaboration with Professor Hajime Igarashi of Hokkaido University’s Institute of Information Science, and an abstract outlining the technology will be presented at the COMPUMAG 2019 (The 22nd International Conference on the Computation of Electromagnetic Fields) conference held in Paris, France from Monday, July 15th.

Background

Energy harvesting devices, which convert vibrations from motors, engines, bridges and buildings into electricity, are increasingly attracting attention. The technology underpinning these devices eliminates the need for power transmission cables, battery replacement and charging as a means of supplying electricity to IoT devices installed both indoors and outdoors, as well as for on-board power supply for wearable devices and automotive components. While adopting this technology presents an attractive solution in a variety of practical contexts, further improvements in the efficiency of energy harvesting devices will prove essential to solving the greater environmental and energy problems facing humanity.

Issues

Energy harvesting devices convert vibrations into electrical power using the physical phenomenon of electromagnetic induction produced by permanent magnets and coils. To maximize the power generation efficiency of an energy harvesting device, the magnitude of the magnetic flux density emanating from the many magnets located within the device must be maximized relative to the location of the coil.

At present, the layout in which a number of magnets is arranged in a row (One Dimension) with a concentration of magnetic flux on one side is well-known. Arranging the magnets in a planar shape (2D) will prove effective in increasing the amount of power generated, leading to the achievement of devices with even greater efficiency in the future. Since the arrangement of the magnets arranged in a planar shape (2D) is complicated, however, designers face a formidable challenge when searching for the optimal arrangement of magnets that maximizes flux density near the coil. In fact, the number of possible combinations of magnet orientations when 10 × 10 magnets are arranged in a square shape along a 3- dimensional coordinate axis is more than 77 to the power of 10.

The Newly-Developed Technology

Fujitsu has embarked on a collaboration with Professor Hajime Igarashi of Hokkaido University’s Institute of Information Science to develop a technique for calculating the optimal arrangement of planar magnets using the Digital Annealer, which is a unique computing architecture that simulates quantum behavior to rapidly solve combinatorial optimization problems not feasible for conventional computers.

For the Digital Annealer, problems must be defined over binary (0 and 1) variables. In this study, the direction of a magnet that can be oriented along the 3 axes of X, Y, and Z is expressed by 3 bit variables, and the magnetic flux density generated is formulated using the variable and Bio-Savart’s law, one of the laws of electromagnetism, and an objective function (function whose value should be maximized) as a combinatorial optimization problem in which the magnetic flux density is maximized for a specific part. Furthermore, by adding a new variable to the objective function so that it can be formulated in the QUBO(1) format, the Digital Annealer it can calculate the optimum design structure for planar magnet arrays.

An image in which the optimum arrangement of magnets maximizes the flux density toward the coil. Image courtesy of Fujitsu Laboratories Limited.

Outcome

Using Fujitsu’s Digital Annealer, it was possible to calculate the optimum design of a planar (2D) magnet array from a vast number of potential combinations. The simulation confirmed that the design optimization problem of 10 × 10 2-dimensional magnet arrays can be solved in a few seconds. By using the resulting array, we were able to improve the magnetic flux density by 17% and the power generation efficiency of the energy harvesting device by 16% compared with the conventionally-designed 2-dimensional array. This technology is also expected to be applied to the optimization of magnet arrays for linear motors, where magnetic flux density must be controlled as intended for higher performance.

Future Plans

Fujitsu Laboratories will contribute to the further development of magnetic devices used in energy harvesting, etc., by implementing this technology as one of the professional services for Digital Annealer in fiscal 2020.


Source: Fujitsu Laboratories Limited 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire