Fujitsu Installs Fugaku Supercomputer Technology at German University to Explore Origins of Universe

July 15, 2020

MUNICH, Germany, July 15, 2020 – Researchers at the University of Regensburg in Germany are extending their exploration of the origins of the universe boosted by a new Fujitsu supercomputer, the PRIMEHPC FX700 underpinned by the new Arm-based Fujitsu A64FX processor. The university’s QPACE4 (QCD Parallel Computing Engine 4) project can now reach new insights, using a supercomputer based on technology developed by Fujitsu for the supercomputer Fugaku, recently ranked No. 1 in the TOP500 list of the world’s supercomputers1.

Image courtesy of Fujitsu.

The installation of QPACE4 makes the University of Regensburg the first user in Europe to use Fujitsu’s PRIMEHPC FX700 with A64FX processors (CPUs) – the latest in a long series of supercomputer first-to-market milestones achieved by Fujitsu2. These CPUs are compliant with Arm’s Armv8.2-A SVE, the newest instruction set architecture for high-performance servers, and are particularly energy efficient.

The Scientists of the University of Regensburg is leveraging the significant increase in compute capability for numerical simulations as part of its exploration of quantum chromodynamics (QCD). This work aims to understand fundamental particles better, including the inner structure of the proton, and ultimately to determine the state of the universe immediately after the Big Bang. The supercomputer will also be used by the University of Regensburg in the field of bioinformatics, with a focus on cancer research and immunology.

QPACE4 is the fourth supercomputer in the framework of SFB/TRR-553, funded by the German Research Foundation (DFG). It utilizes the same processor as the supercomputer Fugaku, which was jointly developed by Fujitsu with the world-renowned RIKEN Center for Computational Science4 in Kobe, Japan.

As well as superior performance per Watt, the A64FX processor also incorporates Scalable Vector Extensions (SVEs). Developed for applications in high performance computing (HPC), this speeds up complex calculations by allowing the same mathematical operation to be carried out in parallel on large amounts of data. In addition, the processor is coupled to an extremely fast main memory (High Bandwidth Memory, or HBM2), which for most applications is just as important as pure computing power, delivering a highly balanced ratio of computing power, memory bandwidth and network bandwidth, and avoiding performance bottlenecks. A further important difference is that the Fujitsu system’s computing power is not based on graphics cards. This makes it much easier to program, especially in the case of massive parallelization, which is essential for so-called ‘Grand Challenge’ applications5.

The deployment of a new supercomputer in Regensburg is the latest example of the University’s extremely strong partnership with Fujitsu, based on HPC and supercomputers in particular. In 2016 it took ownership, together with the University of Wuppertal, of the Fujitsu QPACE3 supercomputer – installed at the Jülich Supercomputing Centre (JSC) near Cologne.

Prof. Dr Tilo Wettig, Ph.D., professor of physics at the University of Regensburg says: “Again Fujitsu has provided the University of Regensburg with the ultimate supercomputer to progress our work on fundamental physics and research into vital aspects of human health, such as cancer and immunology. This partnership has proven highly successful over many years. We applaud Fujitsu’s commitment to maximizing compute power and minimizing energy consumption, we have been particularly impressed with Fujitsu’s flexibility and responsiveness to us as a customer. The time taken to deliver, install, configure and deploy such advanced technology has been nothing short of outstanding.”

Rupert Lehner, Head of Central and Eastern Europe, Products Europe at Fujitsu, comments: “Fujitsu not only has a distinguished track record developing the world’s fastest supercomputers, we also really understand our HPC customers’ specific needs around performance, applications and service. Our partnership with the University of Regensburg exemplifies that approach and we are proud to be helping the research team there take another step forward using Fujitsu technology.”

  • 1 Since 1993, the TOP500 has updated and published relative rankings of the performance of the world’s fastest supercomputers on a semi-annual basis. Performance results reported by vendors are validated by high-performance computer experts, computational scientists, manufacturers, and the wider Internet community. The Fugaku system ranked first in the June 2020 TOP500 list had a LINPACK performance of 415.53 PFLOPS (petaflops) with a computing efficiency ratio of 80.87%. It is the first time a Japanese supercomputer has taken first place in TOP500 since the K computer, also manufactured by Fujitsu, claimed No.1 position in 2011. Fugaku’s performance is approximately 2.8 times that of the supercomputer ranked second in the current TOP500 list, with 148.6 PFLOPS. These rankings were announced on June 22, 2020 at the virtual event ISC (International Supercomputing Conference) High Performance 2020 Digital.
  • 2 Fujitsu has more than 40 years of expertise in the field of supercomputing, having developed the first supercomputer in Japan in 1977. In 2006, Fujitsu entered a long-standing relationship with Japan’s leading research institute RIKEN, which led to the development of the “K computer”. In 2011, the “K computer” – also designed by RIKEN and Fujitsu – topped the TOP500 list, with its computation speed of more than 10 PetaFLOPS. Underlining the continued pace of supercomputer development, Fugaku’s Linpack performance is approximately 40x that of “K computer”, and more than twice as fast as the Summit system which led the TOP500 in November last year.
  • 3 SFB/TRR-55 “Hadron Physics from Lattice QCD” was established in July 2008 by the Deutsche Forschungsgemeinschaft at the Universities of Regensburg and Wuppertal. It is currently coordinated by Regensburg
  • 4 RIKEN is Japan’s largest comprehensive research institution renowned for high-quality research in a diverse range of scientific disciplines. Founded in 1917 as a private research foundation in Tokyo, RIKEN has grown rapidly in size and scope, today encompassing a network of world-class research centers and institutes across Japan.
  • 5 Grand Challenges are immensely difficult but important problems set by institutions or professions to encourage solutions to real-world issues that are global in scale, multi-disciplinary in approach and are capable of capturing the public’s imagination, and hence political support.

About Fujitsu

Fujitsu is the leading Japanese information and communication technology (ICT) company, offering a full range of technology products, solutions, and services. Approximately 130,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 3.9 trillion yen (US$35 billion) for the fiscal year ended March 31, 2020. For more information, please see www.fujitsu.com.


Source: Fujitsu 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: October 2020 Edition

October 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

David Patterson Kicks Off AI Hardware Summit Championing Domain Specific Chips

September 30, 2020

The 2020 AI Hardware Summit kicked off yesterday with long-time computer luminary David Patterson digging into all things TPU and extolling on how they outrun GPUs for AI needs. After presenting data in which the TPUv3 b Read more…

By John Russell

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It also introduced the D-Wave Launch program intended to jump st Read more…

By John Russell

What’s New in Computing vs. COVID-19: AMD, Remdesivir, Fab Spending & More

September 29, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

Global QC Market Projected to Grow to More Than $800 million by 2024

September 28, 2020

The Quantum Economic Development Consortium (QED-C) and Hyperion Research are projecting that the global quantum computing (QC) market - worth an estimated $320 million in 2020 - will grow at an anticipated 27% CAGR betw Read more…

By Staff Reports

AWS Solution Channel

EFA-enabled C5n instances to scale Simcenter STAR-CCM+

For HPC workloads that use multiple nodes, the cluster setup including the network is at the heart of scalability concerns. Some of the most common concerns from CFD or HPC engineers are “how well will my application scale on AWS?”, “how do I optimize the associated costs for best performance of my application on AWS?”, “what are the best practices in setting up an HPC cluster on AWS to reduce the simulation turn-around time and maintain high efficiency?”. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Committee last week accepted a subcommittee report calling for a t Read more…

By John Russell

David Patterson Kicks Off AI Hardware Summit Championing Domain Specific Chips

September 30, 2020

The 2020 AI Hardware Summit kicked off yesterday with long-time computer luminary David Patterson digging into all things TPU and extolling on how they outrun G Read more…

By John Russell

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It a Read more…

By John Russell

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Commit Read more…

By John Russell

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the new platforms will deliver 50 percent and 40 percent more... Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics code. These optimizations will be incorporated into release 2.15 with patches available for earlier versions. Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This