Fujitsu Installs Fugaku Supercomputer Technology at German University to Explore Origins of Universe

July 15, 2020

MUNICH, Germany, July 15, 2020 – Researchers at the University of Regensburg in Germany are extending their exploration of the origins of the universe boosted by a new Fujitsu supercomputer, the PRIMEHPC FX700 underpinned by the new Arm-based Fujitsu A64FX processor. The university’s QPACE4 (QCD Parallel Computing Engine 4) project can now reach new insights, using a supercomputer based on technology developed by Fujitsu for the supercomputer Fugaku, recently ranked No. 1 in the TOP500 list of the world’s supercomputers1.

Image courtesy of Fujitsu.

The installation of QPACE4 makes the University of Regensburg the first user in Europe to use Fujitsu’s PRIMEHPC FX700 with A64FX processors (CPUs) – the latest in a long series of supercomputer first-to-market milestones achieved by Fujitsu2. These CPUs are compliant with Arm’s Armv8.2-A SVE, the newest instruction set architecture for high-performance servers, and are particularly energy efficient.

The Scientists of the University of Regensburg is leveraging the significant increase in compute capability for numerical simulations as part of its exploration of quantum chromodynamics (QCD). This work aims to understand fundamental particles better, including the inner structure of the proton, and ultimately to determine the state of the universe immediately after the Big Bang. The supercomputer will also be used by the University of Regensburg in the field of bioinformatics, with a focus on cancer research and immunology.

QPACE4 is the fourth supercomputer in the framework of SFB/TRR-553, funded by the German Research Foundation (DFG). It utilizes the same processor as the supercomputer Fugaku, which was jointly developed by Fujitsu with the world-renowned RIKEN Center for Computational Science4 in Kobe, Japan.

As well as superior performance per Watt, the A64FX processor also incorporates Scalable Vector Extensions (SVEs). Developed for applications in high performance computing (HPC), this speeds up complex calculations by allowing the same mathematical operation to be carried out in parallel on large amounts of data. In addition, the processor is coupled to an extremely fast main memory (High Bandwidth Memory, or HBM2), which for most applications is just as important as pure computing power, delivering a highly balanced ratio of computing power, memory bandwidth and network bandwidth, and avoiding performance bottlenecks. A further important difference is that the Fujitsu system’s computing power is not based on graphics cards. This makes it much easier to program, especially in the case of massive parallelization, which is essential for so-called ‘Grand Challenge’ applications5.

The deployment of a new supercomputer in Regensburg is the latest example of the University’s extremely strong partnership with Fujitsu, based on HPC and supercomputers in particular. In 2016 it took ownership, together with the University of Wuppertal, of the Fujitsu QPACE3 supercomputer – installed at the Jülich Supercomputing Centre (JSC) near Cologne.

Prof. Dr Tilo Wettig, Ph.D., professor of physics at the University of Regensburg says: “Again Fujitsu has provided the University of Regensburg with the ultimate supercomputer to progress our work on fundamental physics and research into vital aspects of human health, such as cancer and immunology. This partnership has proven highly successful over many years. We applaud Fujitsu’s commitment to maximizing compute power and minimizing energy consumption, we have been particularly impressed with Fujitsu’s flexibility and responsiveness to us as a customer. The time taken to deliver, install, configure and deploy such advanced technology has been nothing short of outstanding.”

Rupert Lehner, Head of Central and Eastern Europe, Products Europe at Fujitsu, comments: “Fujitsu not only has a distinguished track record developing the world’s fastest supercomputers, we also really understand our HPC customers’ specific needs around performance, applications and service. Our partnership with the University of Regensburg exemplifies that approach and we are proud to be helping the research team there take another step forward using Fujitsu technology.”

  • 1 Since 1993, the TOP500 has updated and published relative rankings of the performance of the world’s fastest supercomputers on a semi-annual basis. Performance results reported by vendors are validated by high-performance computer experts, computational scientists, manufacturers, and the wider Internet community. The Fugaku system ranked first in the June 2020 TOP500 list had a LINPACK performance of 415.53 PFLOPS (petaflops) with a computing efficiency ratio of 80.87%. It is the first time a Japanese supercomputer has taken first place in TOP500 since the K computer, also manufactured by Fujitsu, claimed No.1 position in 2011. Fugaku’s performance is approximately 2.8 times that of the supercomputer ranked second in the current TOP500 list, with 148.6 PFLOPS. These rankings were announced on June 22, 2020 at the virtual event ISC (International Supercomputing Conference) High Performance 2020 Digital.
  • 2 Fujitsu has more than 40 years of expertise in the field of supercomputing, having developed the first supercomputer in Japan in 1977. In 2006, Fujitsu entered a long-standing relationship with Japan’s leading research institute RIKEN, which led to the development of the “K computer”. In 2011, the “K computer” – also designed by RIKEN and Fujitsu – topped the TOP500 list, with its computation speed of more than 10 PetaFLOPS. Underlining the continued pace of supercomputer development, Fugaku’s Linpack performance is approximately 40x that of “K computer”, and more than twice as fast as the Summit system which led the TOP500 in November last year.
  • 3 SFB/TRR-55 “Hadron Physics from Lattice QCD” was established in July 2008 by the Deutsche Forschungsgemeinschaft at the Universities of Regensburg and Wuppertal. It is currently coordinated by Regensburg
  • 4 RIKEN is Japan’s largest comprehensive research institution renowned for high-quality research in a diverse range of scientific disciplines. Founded in 1917 as a private research foundation in Tokyo, RIKEN has grown rapidly in size and scope, today encompassing a network of world-class research centers and institutes across Japan.
  • 5 Grand Challenges are immensely difficult but important problems set by institutions or professions to encourage solutions to real-world issues that are global in scale, multi-disciplinary in approach and are capable of capturing the public’s imagination, and hence political support.

About Fujitsu

Fujitsu is the leading Japanese information and communication technology (ICT) company, offering a full range of technology products, solutions, and services. Approximately 130,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 3.9 trillion yen (US$35 billion) for the fiscal year ended March 31, 2020. For more information, please see www.fujitsu.com.


Source: Fujitsu 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire