Garvan Selects Dell EMC to Deliver HPC Infrastructure

August 28, 2018

SYDNEY, Aug. 28, 2018 — The Garvan Institute of Medical Research has selected Dell EMC to deliver a high-performance computing (HPC) system for Garvan’s Data Intensive Computer Engineering (DICE) group, designed to push scientific boundaries and transform the way genomic research is currently performed in Australia.

Computational Power Enables Transformative Scientific Research

Genomics, the study of information encoded in an individual’s DNA, allows researchers to study how genes impact health and disease. When the first human genome was sequenced, the project took over 10 years and cost almost US$3 billion[1]. In recent years, extraordinary advancements in DNA sequencing have made the analysis of whole human genomes viable, and today, Garvan can sequence up to 50 genomes a day at a base price of around US$1,000.

Garvan’s genomic research focuses on understanding how variations in each of our DNA sequences contributes to health and disease. Through genome sequencing and analysis of people, with and without a range of conditions, Garvan’s research is helping to drive precision medicine. This enables the delivery of the right medicine to the right person at the right time, helps to assess predisposition for a disease, and predicts adverse reactions to certain drugs. Garvan has already seen significant success in identifying the DNA changes that underpin cancer and immune, cardiac, mitochondrial and other diseases.

To store, analyse and use this genomic information effectively, Garvan requires large computational resources and data storage. Each person’s genomic data contains over six billion bases and around five million genetic variants, taking up to 700 hours to process. The Dell EMC HPC infrastructure, built on 14th generation PowerEdge technologies, with NVIDIA GPU-accelerated computing and Intel® Xeon® Scalable Processoand FPGA, enables researchers to leverage best-of-breed architecture that can handle scientific workloads and push the boundaries of what’s possible. The new infrastructure will expand on Garvan’s existing on-premise system–not only supporting traditional computational analysis and simulation but offering extensive big data analytics and deep learning capabilities.

Supporting the Future of Life-Saving Precision Medicine

The investment will underpin several of Garvan’s flagship projects and scientific collaborations, accelerating research at a lower cost than historical solutions.

For example, Garvan’s genome sequencing capability is core to the Kinghorn Centre for Clinical Genomics, the Garvan Weizmann Centre for Cellular Genomics (Garvan’s single-cell genomics research centre) and the Sydney Genomics Collaborative, a AU$24 million investment by the NSW Government to foster genomics research in NSW and encourage national and international collaborations. As part of this program, Garvan established the Medical Genome Reference Bank (MGRB), containing 4,000 whole genome sequences to use as controls in disease research. To be able to support easy interrogation of this cohort, a team of Garvan researchers led by Dr Warren Kaplan (chief of informatics at Garvan’s Kinghorn Centre for Clinical Genomics), built Vectis, a scalable, open-source genome analysis program. It’s designed to empower biologists, clinicians, researchers and data scientists to store, analyse and query the complex genomic data–ultimately, uncovering genetic mechanisms of disease.

Garvan’s genome sequencing capability is also crucial to precision cancer medicine initiatives at Garvan, including the Lions Kids Cancer Genome Project (Genome Power) and the Australian Genomic Cancer Medicine Program, a series of clinical trials led by Professor David Thomas (Garvan and The Kinghorn Cancer Centre). Through its Molecular Screening and Therapeutics (MoST) clinical trials, the Australian Genomic Cancer Medicine Program seeks to uncover new treatment options for patients across Australia who have rare cancers or have exhausted other treatment options. The program compares the genome of each patient–their DNA code–with the genome of the patient’s tumour to discern the underlying cause of their cancer and target treatment accordingly. It was recently announced that the program would receive $50 million in Australian Government funding, to bring the program to every state and territory in Australia.

Supporting these projects is the DICE HPC infrastructure, which provides memory intensive HPC compute nodes, deep learning (AI) GPU compute nodes and a scalable design that allows for mixed workloads and extensive research data storage. With the new infrastructure in place, Garvan researchers can conduct specific analysis at faster speeds. This allows them to take research findings and apply them to patient treatment as soon as possible.

“The technology has transformed the way we do science,” Dr. Kaplan says. “It’s given us the ability to transform Garvan into a data-driven medical research institute, and the more genomes we sequence, the more we’re able to use that information to inform future studies.”

Pushing tomorrow’s scientific boundaries

Dr. Kaplan says the technology is a critical driver for the institute to achieve its mission of transforming the lives of people across Australia.

“We want to change the direction of medicine and have a life-changing impact on people’s health. We see genomics as the key to driving this transformative change, and we couldn’t achieve this without the computing infrastructure to make it possible. Genomics requires significant computational power to analyse the data, and that’s why we partnered with Dell EMC,” he says. “The team at Dell EMC was able to meet every single one of our requirements for the technology, offering a solution to meet our needs now and into the future.”

Using best-of-breed technology, the DICE high-performance computing system has been built on Dell EMC’s 14th generation PowerEdge high-performance computing technology.

●                    Across 47 Dell EMC PowerEdge servers, the solution provides clinical researchers with the genomics processing capacity of 1,632 Intel Xeon Scalable Processor cores

●                    10 Intel Arria 10 GX FPGAs

●                    122,880 NVIDIA Tesla V100 CUDA cores

●                    15,360 NVIDIA Tensor cores to accelerate HPC and AI techniques

●                    744TB of NVMe to accelerate in memory processing of genome data sets

●                    41TB DDR4 RAM Memory

●                    530TB usable capacity CephFS storage

●                    The HPC cluster is connected by 25 GbE and 100 GbE

Dell EMC is also providing Garvan researchers with Intel Programmable Acceleration Cards with Intel Arria 10 GX FPGAs to develop high-performance hardware accelerated genomic analysis solutions. Dr. Kaplan and his team will further advance their clinical research utilizing the FPGA’s versatile compute acceleration for genomics.

About Dell EMC

Dell EMC, a part of Dell Technologies, enables organisations to modernise, automate and transform their data centre using industry-leading converged infrastructure, servers, storage and data protection technologies. This provides a trusted foundation for businesses to transform IT, through the creation of a hybrid cloud, and transform their business through the creation of cloud-native applications and big data solutions. Dell EMC services customers across 180 countries – including 99 percent of the Fortune 500 – with the industry’s most comprehensive and innovative portfolio from edge to core to cloud.

About the Garvan Institute

The Garvan Institute of Medical Research is one of Australia’s largest medical research institutions and is at the forefront of next-generation genomic DNA sequencing in Australia. Garvan’s main research areas are: cancer, diabetes and metabolism, genomics and epigenetics, immunology and inflammation, osteoporosis and bone biology, and neuroscience. Garvan’s mission is to make significant contributions to medical science that will change the directions of science and medicine and have major impacts on human health.

Source: Dell EMC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Migration Tools Needed to Shift ML to Production

September 20, 2018

The confluence of accelerators like cloud GPUs along with the ability to handle data-rich HPC workloads will help push more machine learning projects into production, concludes a new study that also stresses the importan Read more…

By George Leopold

Kyoto University ACCMS Implements Fine-grained Power Management

September 19, 2018

Data center power management is a ubiquitous challenge and in few places is it more so than at Kyoto University Academic Center for Computing and Media Studies (ACCMS)) where power consumption limits were imposed followi Read more…

By Staff

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This