Garvan Selects Dell EMC to Deliver HPC Infrastructure

August 28, 2018

SYDNEY, Aug. 28, 2018 — The Garvan Institute of Medical Research has selected Dell EMC to deliver a high-performance computing (HPC) system for Garvan’s Data Intensive Computer Engineering (DICE) group, designed to push scientific boundaries and transform the way genomic research is currently performed in Australia.

Computational Power Enables Transformative Scientific Research

Genomics, the study of information encoded in an individual’s DNA, allows researchers to study how genes impact health and disease. When the first human genome was sequenced, the project took over 10 years and cost almost US$3 billion[1]. In recent years, extraordinary advancements in DNA sequencing have made the analysis of whole human genomes viable, and today, Garvan can sequence up to 50 genomes a day at a base price of around US$1,000.

Garvan’s genomic research focuses on understanding how variations in each of our DNA sequences contributes to health and disease. Through genome sequencing and analysis of people, with and without a range of conditions, Garvan’s research is helping to drive precision medicine. This enables the delivery of the right medicine to the right person at the right time, helps to assess predisposition for a disease, and predicts adverse reactions to certain drugs. Garvan has already seen significant success in identifying the DNA changes that underpin cancer and immune, cardiac, mitochondrial and other diseases.

To store, analyse and use this genomic information effectively, Garvan requires large computational resources and data storage. Each person’s genomic data contains over six billion bases and around five million genetic variants, taking up to 700 hours to process. The Dell EMC HPC infrastructure, built on 14th generation PowerEdge technologies, with NVIDIA GPU-accelerated computing and Intel® Xeon® Scalable Processoand FPGA, enables researchers to leverage best-of-breed architecture that can handle scientific workloads and push the boundaries of what’s possible. The new infrastructure will expand on Garvan’s existing on-premise system–not only supporting traditional computational analysis and simulation but offering extensive big data analytics and deep learning capabilities.

Supporting the Future of Life-Saving Precision Medicine

The investment will underpin several of Garvan’s flagship projects and scientific collaborations, accelerating research at a lower cost than historical solutions.

For example, Garvan’s genome sequencing capability is core to the Kinghorn Centre for Clinical Genomics, the Garvan Weizmann Centre for Cellular Genomics (Garvan’s single-cell genomics research centre) and the Sydney Genomics Collaborative, a AU$24 million investment by the NSW Government to foster genomics research in NSW and encourage national and international collaborations. As part of this program, Garvan established the Medical Genome Reference Bank (MGRB), containing 4,000 whole genome sequences to use as controls in disease research. To be able to support easy interrogation of this cohort, a team of Garvan researchers led by Dr Warren Kaplan (chief of informatics at Garvan’s Kinghorn Centre for Clinical Genomics), built Vectis, a scalable, open-source genome analysis program. It’s designed to empower biologists, clinicians, researchers and data scientists to store, analyse and query the complex genomic data–ultimately, uncovering genetic mechanisms of disease.

Garvan’s genome sequencing capability is also crucial to precision cancer medicine initiatives at Garvan, including the Lions Kids Cancer Genome Project (Genome Power) and the Australian Genomic Cancer Medicine Program, a series of clinical trials led by Professor David Thomas (Garvan and The Kinghorn Cancer Centre). Through its Molecular Screening and Therapeutics (MoST) clinical trials, the Australian Genomic Cancer Medicine Program seeks to uncover new treatment options for patients across Australia who have rare cancers or have exhausted other treatment options. The program compares the genome of each patient–their DNA code–with the genome of the patient’s tumour to discern the underlying cause of their cancer and target treatment accordingly. It was recently announced that the program would receive $50 million in Australian Government funding, to bring the program to every state and territory in Australia.

Supporting these projects is the DICE HPC infrastructure, which provides memory intensive HPC compute nodes, deep learning (AI) GPU compute nodes and a scalable design that allows for mixed workloads and extensive research data storage. With the new infrastructure in place, Garvan researchers can conduct specific analysis at faster speeds. This allows them to take research findings and apply them to patient treatment as soon as possible.

“The technology has transformed the way we do science,” Dr. Kaplan says. “It’s given us the ability to transform Garvan into a data-driven medical research institute, and the more genomes we sequence, the more we’re able to use that information to inform future studies.”

Pushing tomorrow’s scientific boundaries

Dr. Kaplan says the technology is a critical driver for the institute to achieve its mission of transforming the lives of people across Australia.

“We want to change the direction of medicine and have a life-changing impact on people’s health. We see genomics as the key to driving this transformative change, and we couldn’t achieve this without the computing infrastructure to make it possible. Genomics requires significant computational power to analyse the data, and that’s why we partnered with Dell EMC,” he says. “The team at Dell EMC was able to meet every single one of our requirements for the technology, offering a solution to meet our needs now and into the future.”

Using best-of-breed technology, the DICE high-performance computing system has been built on Dell EMC’s 14th generation PowerEdge high-performance computing technology.

●                    Across 47 Dell EMC PowerEdge servers, the solution provides clinical researchers with the genomics processing capacity of 1,632 Intel Xeon Scalable Processor cores

●                    10 Intel Arria 10 GX FPGAs

●                    122,880 NVIDIA Tesla V100 CUDA cores

●                    15,360 NVIDIA Tensor cores to accelerate HPC and AI techniques

●                    744TB of NVMe to accelerate in memory processing of genome data sets

●                    41TB DDR4 RAM Memory

●                    530TB usable capacity CephFS storage

●                    The HPC cluster is connected by 25 GbE and 100 GbE

Dell EMC is also providing Garvan researchers with Intel Programmable Acceleration Cards with Intel Arria 10 GX FPGAs to develop high-performance hardware accelerated genomic analysis solutions. Dr. Kaplan and his team will further advance their clinical research utilizing the FPGA’s versatile compute acceleration for genomics.

About Dell EMC

Dell EMC, a part of Dell Technologies, enables organisations to modernise, automate and transform their data centre using industry-leading converged infrastructure, servers, storage and data protection technologies. This provides a trusted foundation for businesses to transform IT, through the creation of a hybrid cloud, and transform their business through the creation of cloud-native applications and big data solutions. Dell EMC services customers across 180 countries – including 99 percent of the Fortune 500 – with the industry’s most comprehensive and innovative portfolio from edge to core to cloud.

About the Garvan Institute

The Garvan Institute of Medical Research is one of Australia’s largest medical research institutions and is at the forefront of next-generation genomic DNA sequencing in Australia. Garvan’s main research areas are: cancer, diabetes and metabolism, genomics and epigenetics, immunology and inflammation, osteoporosis and bone biology, and neuroscience. Garvan’s mission is to make significant contributions to medical science that will change the directions of science and medicine and have major impacts on human health.


Source: Dell EMC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire