GCS Assigns 753.6 Million Computing Core Hours to National Science Projects

November 13, 2013

BERLIN, Germany, Nov. 13 —  National scientists and researchers’ demand for computing time on the high performance computing systems of the Gauss Centre for Supercomputing (GCS) continues to be unabated. The 10th GCS Call for Large- Scale Projects, which was open from July 30 to August 30, 2013 resulted in a record amount of computing time granted to ambitious German computational science and emngineering projects: The total number of 753.58 million computing core hours assigned means the largest grant of computing time ever allocated by the GCS Steering Committee. The projects awarded access to the vast GCS supercomputing resources come from a wide array of scientific fields including Astrophysics, Chemistry, High Energy Physics, and Scientific Engineering.

From the 19 applications submitted, a total of 13 national computational science projects met the strict GCS large-scale project qualification criteria and were awarded with the highly coveted computing time on the GCS high performance computing (HPC) systems. The TOP5 individual allotments of computing core hours were granted to the following outstanding projects:

Astrophysics:

• Magneticum Dr. Klaus Dolag, Ludwig-Maximilians-Universität München 45M core hours on SuperMUC of Leibniz Supercomputing Centre Garching (LRZ)

Chemistry:

•Mechanochemistry of Covalent Bond Breaking from First Principles Simulations Prof. Dr. Dominik Marx, Ruhr-Universität Bochum 64.9M core hours on JUQUEEN of Jülich Supercomputing Centre (JSC)

High Energy Physics:

•Lattice QCD with Wilson Quarks at Zero and Non-Zero Temperature Prof. Dr. Hartmut Wittig, Johannes Gutenberg-Universität Mainz 70M core hours on JUQUEEN of Jülich Supercomputing Centre (JSC)

•2+1+1 Lattice QCD Calculations with Hex Smeared Clover Fermions Prof. Dr. Zoltan Fodor, Bergische Universität Wuppertal 65M core hours on JUQUEEN of Jülich Supercomputing Centre (JSC)

Scientific Engineering:

•LAMTUR: Investigation of Laminar-Turbulent Transition and Flow Control in Boundary Layers – Prof. Dr.-Ing. Ulrich Rist, IAG, Universität Stuttgart 125M core hours on Hermit of High Performance Computing Center Stuttgart (HLRS)

The 13 approved large-scale projects are distributed between the three GCS HPC systems Hermit of HLRS, JUQUEEN of JSC, and SuperMUC of LRZ. All three GCS systems provide computing performance in the Petaflops-range (1 Petaflops = 1 Quadrillion floating point operations per second or: a 1 with 15 zeros) and are of complementary system design and architecture to optimally respond to the needs of the researchers, developers, and engineers. For the large-scale projects of the 10th GCS call, access to computing resources and support is granted for a time period of 12 months.

“We are very happy to see that there is a steady rise in the demand for computing time on our HPC systems,” comments Prof. Dr.-Ing. Siegfried Wagner, Chairman of the GCS Steering Committee. “GCS offers world-class HPC resources to aid in scientific computing, and this is reflected in the quality of the projects our system infrastructure is being used for. Only a couple of years ago, the now supported projects would have been impossible to accommodate as they exceeded the then available GCS resources in all aspects: the infrastructure, the software and the HPC expertise. I am proud to say that meanwhile GCS has achieved the favourable position to serve projects of this magnitude,” states Prof. Wagner who points out that, like with previous calls, GCS unfortunately could not entirely fulfil the research community’s ever increasing demand for computing power. With the 10th GCS call, almost 1.5 billion computing core hours had been requested yet only half of it– 753.6 million core hours–could be granted, primarily for lack of computing resources.

Computing time allocations for GCS Large-Scale Projects are dispersed based on scientific criteria and their technical feasibility through independent reviewers in a peer-review process led by the GCS Steering Committee. The complete list of approved GCS Large Scale Projects (10th Call) can be found at http://www.gauss-centre.eu/gauss- centre/EN/Projects/LargeScaleProjects/10th-call.html

About GCS Large Scale Projects

Per the mission of the Gauss Centre for Supercomputing, all scientists and researchers in Germany have access to the petascale HPC systems of Germany’s leading supercomputing institution. Projects are classified as “large-scale” if they require more than 35 mio. core-hours in one year on a GCS member centre’s high-end system. Computing time on the GCS systems is allocated by the GCS Steering Committee to scientifically leading, ground-breaking projects which deal with complex, demanding, and innovative simulations that would not be possible without the GCS petascale infrastructure. The projects are evaluated via a strict peer-review process on the basis of the project’s scientific and technical excellence.

The GCS Calls for Large-Scale Projects application procedure and criteria for decision is described in detail at http://www.gauss-centre.eu/gauss- centre/EN/HPCservices/HowToApply/LargeScaleProjects/largeScaleProjects_node.html

About GCS

The Gauss Centre for Supercomputing (GCS) combines the three national supercomputing centres HLRS (High Performance Computing Center Stuttgart), JSC (Jülich Supercomputing Centre), and LRZ (Leibniz Supercomputing Centre, Garching near Munich) into Germany’s Tier-0 supercomputing institution. Concertedly, the three centres provide the largest and most powerful supercomputing infrastructure in all of Europe to serve a wide range of industrial and research activities in various disciplines. They also provide top-class training and education for the national as well as the European High Performance Computing (HPC) community. GCS is the German member of PRACE (Partnership for Advance Computing in Europe), an international non- profit association consisting of 25 member countries, whose representative organizations create a pan-European supercomputing infrastructure, providing access to computing and data management resources and services for large-scale scientific and engineering applications at the highest performance level.

—–

Source: Gauss Centre for Supercomputing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This