GE Spins up Models on Summit Supercomputer to Study Energy Loss in Turbines

June 14, 2021

June 14, 2021 — High-pressure turbines are complex pieces of engineering and vital components of gas turbines used to propel jet engines. The more efficient these jet engines are, the better the outcomes for the aircraft industry. The turbine blades rotate behind the combustion chamber in an engine, and they must endure the hot gas that spews out, accelerating them to high speeds. Because they are crucial to powering aircraft, scientists aim to study them in extreme detail to achieve greater operating efficiency and thus cost savings.

But these large, dynamic systems are difficult to study via experiments and physical testing. Modeling them on supercomputers allows engineers to have an unimpeded view of what occurs during operation, but these simulations are complex, requiring massive supercomputing resources to capture the different scales—from blade-size to tiny eddies, or circular fluid movements, down to microns—needed to fully understand this phenomenon in 3D.

“In a gas turbine—or any turbine—you have both moving and stationary parts, and the question is how those interact,” said Richard Sandberg, chair of computational mechanics in the Department of Mechanical Engineering at the University of Melbourne. “This is important because the flow of hot gases that’s coming off one blade of a turbine is swirling violently as it hits the next blade.” Turbines can have anywhere from 10 to 14 rows of around 50 rotating blades, making these interactions more crucial than ever to understand.

A team led by scientists at General Electric (GE) Aviation and the University of Melbourne has been using supercomputers to model these turbulent flows, tumultuous mixtures of combusted fuel and air, for the last decade to better determine the effects of turbulence on performance. The problem, though, is that the models often used for turbulence are not entirely accurate.

The team knew they needed more supercomputing power to run a problem with the multiple scales needed to get a better grasp on turbulent flows. The researchers were awarded an allocation of computing time on the 200-petaflop Summit supercomputer, the flagship system of the Oak Ridge Leadership Computing Facility, a US Department of Energy (DOE) Office of Science User Facility at DOE’s Oak Ridge National Laboratory. The computing time was funded by the Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, program.

The researchers set their sights on simulating a high-pressure turbine in a real engine condition, a feat that has been impossible—until now.

Modeling at real engine conditions

A row of upstream bars produces highly turbulent flow that gets accelerated through a high-pressure turbine blade row and interacts with the blade surface, causing significant temperature variations. Image Credit: Richard Sandberg, University of Melbourne

Equipped with the most powerful supercomputer in the nation, the team embarked on a journey to model the turbulent flows close to the blades of an engine’s high-pressure turbine. This knowledge will help engineers understand how heat is transferred near the blades, enabling them to design engines with longer lifespans and ensure that their components won’t fail—a measure that is important for both safety and cost savings.

The team used the High-Performance Solver for Turbulence and Aeroacoustic Research (HiPSTAR) code to study the aerodynamics of the first row of blades in a high-pressure turbine at real-engine conditions on Summit.

“Our flow speeds and everything else were similar to what you would really have inside of the engine,” said Sriram Shankaran, a consulting engineer at GE Aviation. “We set up different cases with different types of conditions that mimicked the gas that comes out of the combustor, and we are analyzing the results to look at the effect of this turbulence on how the flow evolves as it goes through that first stage of the turbine.”

Using the HiPSTAR code on Summit, the team ran for the first time real-engine cases—a total of five of them—capturing the largest eddies all the way down to those that were tens of microns away from the blade surface. Specifically, they performed direct numerical simulations (DNS), computational fluid dynamics simulations that directly capture the full range of scales of turbulence without using separate models that can only estimate turbulent effects.

The cases used different Mach numbers, which describe the flow’s velocity compared with the speed of sound. Each simulation took 4–6 weeks to run on the mammoth Summit system, making the simulations some of the most computationally intensive turbomachinery calculations ever run to date.

Better engine design, big cost savings

Schematic of a computational grid for high-pressure turbine simulations. Only every 15th point in the plane is shown for clarity, with the full grid containing 1.5 billion points. Image Credit: Richard Sandberg, University of Melbourne

From the simulations, the researchers determined which regions near a turbine blade experience a greater loss of energy. For the case with the highest Mach number, they discovered an extra loss of energy resulting from strong shock waves, or violent changes in pressure, that interact with the edge and wake of the flow to cause a massive amount of turbulence.

These team’s simulations allowed them to identify this state of the flow at a distance of tens of microns away from the surface of the turbine blade—closer than the team has ever attempted to perform before. The results were published in the Journal of Turbomachinery.

The simulations also revealed where most of the losses occur and showed where current design tools fail in predicting the correct level of loss.

The team’s simulations are helping GE better understand how to optimize the flow through the engine by minimizing turbulence, aiding the design process and leading to better engines.

“We want to make the gas turbine more efficient,” Sandberg said. “And if you understand how the flow of hot gas behaves inside of the turbine, you can adapt your design to extract more power from that flow, which is what the turbine is doing.”

There is a huge improvement to be had in fuel consumption and derivative effects with more accurate prediction of real-engine conditions.

For their next simulations, the team has turned to cases that include the walls at the end of the blades, a feature that adds a new layer of complexity and accuracy to the flow.

“We are performing a new set of simulations that include these end walls that generate a whole new flow pattern by themselves,” Sandberg said.

The team is also using the data generated in the simulations to build new models via machine learning. With more accurate turbulence models in hand, engineers can design the next generation of engines using new-and-improved design tools.

“Simulating these kinds of problems is extremely challenging,” Sandberg said. “Five years ago, we just couldn’t do this. We had to go to some kind of model scale. That was the only thing we were able to do. Today, we can simulate engine-like conditions on Summit.”

Related Publications:

Y. Zhao and R. D. Sandberg, “High-Fidelity Simulations of a High-Pressure Turbine Vane Subject to Large Disturbances: Effect of Exit Mach Number on Losses,” Journal of Turbomachinery 143, no. 9 (2021), doi:10.1115/1.4050453.

Zhao and R. D. Sandberg, “Using a New Entropy Loss Analysis to Assess the Accuracy of RANS Predictions of an HPT Vane,” Journal of Turbomachinery 142, no. 8 (2020): 081008, doi:10.1115/1.4046531.

The research was supported by DOE’s Office of Science. UT-Battelle LLC manages Oak Ridge National Laboratory for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Click here to learn more.


Source: RACHEL MCDOWELL, ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Faster Optical Switch that Operates at ‘Room Temp’ Developed by IBM, Skolkovo Researchers

October 19, 2021

Optical switching technology holds great promise for many applications but hot operating temperatures have been a key obstacle slowing progress. Now, a new optical switching device that can operate at room temperatures a Read more…

Energy Exascale Earth System Model Version 2 Promises Twice the Speed

October 18, 2021

The Energy Exascale Earth System Model (E3SM) is an ongoing Department of Energy (DOE) earth system modeling, simulation and prediction project aiming to “assert and maintain an international scientific leadership posi Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire