GE Spins up Models on Summit Supercomputer to Study Energy Loss in Turbines

June 14, 2021

June 14, 2021 — High-pressure turbines are complex pieces of engineering and vital components of gas turbines used to propel jet engines. The more efficient these jet engines are, the better the outcomes for the aircraft industry. The turbine blades rotate behind the combustion chamber in an engine, and they must endure the hot gas that spews out, accelerating them to high speeds. Because they are crucial to powering aircraft, scientists aim to study them in extreme detail to achieve greater operating efficiency and thus cost savings.

But these large, dynamic systems are difficult to study via experiments and physical testing. Modeling them on supercomputers allows engineers to have an unimpeded view of what occurs during operation, but these simulations are complex, requiring massive supercomputing resources to capture the different scales—from blade-size to tiny eddies, or circular fluid movements, down to microns—needed to fully understand this phenomenon in 3D.

“In a gas turbine—or any turbine—you have both moving and stationary parts, and the question is how those interact,” said Richard Sandberg, chair of computational mechanics in the Department of Mechanical Engineering at the University of Melbourne. “This is important because the flow of hot gases that’s coming off one blade of a turbine is swirling violently as it hits the next blade.” Turbines can have anywhere from 10 to 14 rows of around 50 rotating blades, making these interactions more crucial than ever to understand.

A team led by scientists at General Electric (GE) Aviation and the University of Melbourne has been using supercomputers to model these turbulent flows, tumultuous mixtures of combusted fuel and air, for the last decade to better determine the effects of turbulence on performance. The problem, though, is that the models often used for turbulence are not entirely accurate.

The team knew they needed more supercomputing power to run a problem with the multiple scales needed to get a better grasp on turbulent flows. The researchers were awarded an allocation of computing time on the 200-petaflop Summit supercomputer, the flagship system of the Oak Ridge Leadership Computing Facility, a US Department of Energy (DOE) Office of Science User Facility at DOE’s Oak Ridge National Laboratory. The computing time was funded by the Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, program.

The researchers set their sights on simulating a high-pressure turbine in a real engine condition, a feat that has been impossible—until now.

Modeling at real engine conditions

A row of upstream bars produces highly turbulent flow that gets accelerated through a high-pressure turbine blade row and interacts with the blade surface, causing significant temperature variations. Image Credit: Richard Sandberg, University of Melbourne

Equipped with the most powerful supercomputer in the nation, the team embarked on a journey to model the turbulent flows close to the blades of an engine’s high-pressure turbine. This knowledge will help engineers understand how heat is transferred near the blades, enabling them to design engines with longer lifespans and ensure that their components won’t fail—a measure that is important for both safety and cost savings.

The team used the High-Performance Solver for Turbulence and Aeroacoustic Research (HiPSTAR) code to study the aerodynamics of the first row of blades in a high-pressure turbine at real-engine conditions on Summit.

“Our flow speeds and everything else were similar to what you would really have inside of the engine,” said Sriram Shankaran, a consulting engineer at GE Aviation. “We set up different cases with different types of conditions that mimicked the gas that comes out of the combustor, and we are analyzing the results to look at the effect of this turbulence on how the flow evolves as it goes through that first stage of the turbine.”

Using the HiPSTAR code on Summit, the team ran for the first time real-engine cases—a total of five of them—capturing the largest eddies all the way down to those that were tens of microns away from the blade surface. Specifically, they performed direct numerical simulations (DNS), computational fluid dynamics simulations that directly capture the full range of scales of turbulence without using separate models that can only estimate turbulent effects.

The cases used different Mach numbers, which describe the flow’s velocity compared with the speed of sound. Each simulation took 4–6 weeks to run on the mammoth Summit system, making the simulations some of the most computationally intensive turbomachinery calculations ever run to date.

Better engine design, big cost savings

Schematic of a computational grid for high-pressure turbine simulations. Only every 15th point in the plane is shown for clarity, with the full grid containing 1.5 billion points. Image Credit: Richard Sandberg, University of Melbourne

From the simulations, the researchers determined which regions near a turbine blade experience a greater loss of energy. For the case with the highest Mach number, they discovered an extra loss of energy resulting from strong shock waves, or violent changes in pressure, that interact with the edge and wake of the flow to cause a massive amount of turbulence.

These team’s simulations allowed them to identify this state of the flow at a distance of tens of microns away from the surface of the turbine blade—closer than the team has ever attempted to perform before. The results were published in the Journal of Turbomachinery.

The simulations also revealed where most of the losses occur and showed where current design tools fail in predicting the correct level of loss.

The team’s simulations are helping GE better understand how to optimize the flow through the engine by minimizing turbulence, aiding the design process and leading to better engines.

“We want to make the gas turbine more efficient,” Sandberg said. “And if you understand how the flow of hot gas behaves inside of the turbine, you can adapt your design to extract more power from that flow, which is what the turbine is doing.”

There is a huge improvement to be had in fuel consumption and derivative effects with more accurate prediction of real-engine conditions.

For their next simulations, the team has turned to cases that include the walls at the end of the blades, a feature that adds a new layer of complexity and accuracy to the flow.

“We are performing a new set of simulations that include these end walls that generate a whole new flow pattern by themselves,” Sandberg said.

The team is also using the data generated in the simulations to build new models via machine learning. With more accurate turbulence models in hand, engineers can design the next generation of engines using new-and-improved design tools.

“Simulating these kinds of problems is extremely challenging,” Sandberg said. “Five years ago, we just couldn’t do this. We had to go to some kind of model scale. That was the only thing we were able to do. Today, we can simulate engine-like conditions on Summit.”

Related Publications:

Y. Zhao and R. D. Sandberg, “High-Fidelity Simulations of a High-Pressure Turbine Vane Subject to Large Disturbances: Effect of Exit Mach Number on Losses,” Journal of Turbomachinery 143, no. 9 (2021), doi:10.1115/1.4050453.

Zhao and R. D. Sandberg, “Using a New Entropy Loss Analysis to Assess the Accuracy of RANS Predictions of an HPT Vane,” Journal of Turbomachinery 142, no. 8 (2020): 081008, doi:10.1115/1.4046531.

The research was supported by DOE’s Office of Science. UT-Battelle LLC manages Oak Ridge National Laboratory for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Click here to learn more.


Source: RACHEL MCDOWELL, ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire