GeQCoS Project to Develop German Quantum Computer Based on Superconducting Qubits

February 1, 2021

JÜLICH, Germany, Feb. 1 2021 — Building a quantum processor with novel properties based on superconducting qubits – this is the aim of the four year project GeQCoS (‘German Quantum Computer based on Superconducting Qubits’) funded by the German Federal Ministry of Education and Research (BMBF).

In this joint project, Germany’s leading scientists in the field of superconducting quantum circuits have teamed up to develop innovative concepts for the construction of an improved quantum processor. They aim to realize a quantum processor with improved quality based on new materials and manufacturing methods by the Karlsruhe Institute of Technology (KIT), tailor-made theoretical concepts of the Friedrich-Alexander University Erlangen Nürnberg (FAU), optimized control methods of the Forschungszentrum Jülichs (FZJ) and concepts for new architectures with higher connectivity at the Walther-Meißner-Institute (WMI – Bavarian Academy of Sciences and Technical University of Munich). In order to achieve this goal, semiconductor manufacturer Infineon will develop scalable manufacturing processes, while the Fraunhofer Institute for Applied Solid State Physics (IAF) in Freiburg is promoting the development of optimized chip packages. The processor performance will eventually be demonstrated using a specifically developed quantum algorithm at the WMI.

Improved technology for more powerful quantum computers

Quantum computers hold the promise to efficiently solve problems that are intractable with conventional computers. This includes, for example, the calculation of the properties of complex molecules for the chemical and pharmaceutical industry as well as the solution of optimization tasks, e.g. for manufacturing processes in the automotive industry or for calculations in the financial world. Already today, quantum computers have demonstrated their basic functionality by mastering small, specific problems. The long-term goal of a quantum computer that calculates exponentially faster than a classic computer, however, is still in the future. A suitable architecture for calculating practical problems can only be realized through fundamental improvements in both the hardware and the software.

Within the GeQCoS project, a quantum processor prototype is to be developed that consists of a few superconducting qubits with fundamentally improved components. In this technology the basic building blocks of a quantum computer, the quantum bits or qubits, are implemented by means of currents flowing without resistance in superconducting circuits. These currents are relatively robust to external interference and can retain their quantum properties over relatively long time scales. Together with reliable and scalable manufacturing methods, this has resulted in one of the leading quantum technologies that is already successfully used to build the first quantum processors.

The planned improvements concern, on the one hand, the qubit connectivity, the number of connections between the individual qubits, and the quality of the qubits to enhance the capability to quickly and efficiently produce the desired quantum states. ‘By using new types of materials, we expect better reproducibility and a higher quality of the qubits,’ says Prof. Ioan Pop (KIT). “We will also improve the manufacturing methods in order to avoid imperfections that effect on the quality of the qubits,” adds Prof. Alexey Ustinov (KIT).

Visualisation of a quantum processor. Copyright: Christoph Hohmann.

The researchers pay special attention to the interplay between hardware and software, in which they develop algorithms that are ideally matched to the hardware, i.e. the type of qubits and operations as well as the existing connections between the qubits. ‘This is the only way to make optimal use of the hardware resources currently available and in the near future,’ says Prof. Hartmann (FAU). ‘In particular, we will also develop more efficient and precise methods for characterizing the qubits and modeling the overall system,’ adds Prof. Wilhelm-Mauch, who recently moved to Forschungszentrum Jülich and is working there with Prof. DiVincenzo and Dr. Bushev on setting up a quantum computing center.

Ultimately, however, it is also important to lay the foundations for rapid industrialization and commercialization of quantum technology. This includes a reproducible production of scalable quantum circuits according to industrial standards. ‘With its many years of experience in the manufacture of special semiconductor chips, Infineon can make a significant contribution to improving superconducting circuits. To achieve this goal, we can draw also on our quantum technology expertise in the field of ion traps, a second very promising quantum computer platform,’ says Sebastian Luber from Infineon. In order to be able to control the highly sensitive quantum circuits accurately and at the same time shield them from the environment, optimized processor housings are being developed in the project. , Scaling to a large number of qubits and operating them at low temperatures also poses great challenges to the packaging technology. Here, however, we can very well adapt the existing tools from traditional fields and apply them to the field of quantum technologies ‘, mentions Sébastien Chartier (IAF).

A nucleus for future quantum computer development

The technologies developed within GeQCoS will not only lead to new scientific knowledge, but also strengthen the quantum ecosystem in Germany and Europe through close links with companies. A specific goal is to make the quantum processor available to first-time users both on the hardware and on the software level as early as possible. Thanks to numerous companies with strong research and development departments, Germany is in an ideal starting position to become a leading center for users and beneficiaries of quantum computing. With access to the processor developed in the project, companies in the quantum technology sector should be strengthened and new start-ups should be promoted.

In addition, the project may serve as the nucleus of the current federal initiative to build a quantum computer ‘made in Germany’. The close association between science and industry is a clear commitment to the promotion of technology transfer and to the establishment of a Germany-wide network based on superconducting qubits. The orientation of the project at the interface between engineering, computer science and physics takes into account the interdisciplinary nature of the field of quantum information processing and serves as an important component of the German technology landscape for the training and further education of highly qualified scientists.

GeQCoS “German Quantum Computer based on Superconducting Qubits”

Funded by the German Federal Ministry of Education and Research
Funding program quantum technologies – from basic research to market
Contract number: 13N15685

Project partners:

The Walther Meißner Institute (WMI) of the Bavarian Academy of Sciences has been doing pioneering work in the field of quantum sciences and quantum technologies (QWT) with superconducting circuits in close collaboration with the Technical University of Munich for almost 20 years and is involved in a large number of quantum initiatives in the Munich area in a leading role.

Forschungszentrum Jülich (FZJ) addresses quantum computing in quantum materials, quantum computing devices and with the quantum computing user facility JUNIQ. It covers both fundamental research and applications in quantum computing. It also hosts the central laboratory of the European flagship project OpenSuperQ.

At the Karlsruhe Institute of Technology (KIT), experimental pioneering work on multiplexed qubit readout, two-level defects, quantum simulators and quantum metamaterials has been carried out and the development of quantum circuits has been advanced.

The University of Erlangen Nuremberg (FAU) is one of the most innovative universities in the world. In the group of Prof. Hartmann, besides the development of coupling circuits and qubits, the development of algorithms for near-tearm quantum computers is advanced.

Infineon Technologies AG is a leading global provider of semiconductor solutions with one of the broadest product portfolios in the industry. The company has a high level of expertise in the conception, design and manufacturing of special technologies and is involved in several consortia on quantum technologies, including PIEDMONS on ion trap-based and QUASAR on silicon-based quantum computers.

The Fraunhofer Institute for Applied Solid State Physics IAF offers the entire value chain in the field of III/V semiconductors and has many years of experience in the realization of microwave and submillimeter wave modules both in waveguides and on printed circuit boards. In the field of quantum computing, Fraunhofer IAF participates, for example, in the EU project “SEQUENCE” (development of cryogenic electronics) and coordinates the Competence Center Quantum Computing Baden-Württemberg.

Click here for more information.


Source: Forschungszentrum Jülichs 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire