Germany Launches Its 1st Hybrid Quantum Computer at Leibniz Supercomputing Centre

June 19, 2024

MUNICH, June 18, 2024 — In collaboration with the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences and Humanities, the Q-Exa consortium, led by IQM Quantum Computers (IQM), a global leader in building quantum computers, and including Eviden and HQS Quantum Simulation, has integrated a 20-qubit quantum computer into a supercomputer, SuperMUC-NG in Germany.

The 20-qubit quantum processor unit from IQM, based on superconducting circuits, has been combined with conventional computer technology. Connected to each other, SuperMUC-NG and the quantum system are already exchanging orders on a trial basis, proving that the two technologies can work together and be linked even more closely. The hybrid system is now being prepared for everyday operation at the LRZ, and selected researchers will soon be able to access and experiment with it.

Since 2022, the consortium has been working with LRZ. Q-Exa was not set up in a laboratory but is located for the first time in direct proximity to other high-performance computing systems at the LRZ and can soon be used by researchers via remote access for experiments and to develop algorithms or scientific codes.

Q-Exa is the result of the project “Quantum Computer Extension for Exascale HPC” (Q-Exa), which was funded by the German Federal Ministry of Education and Research (BMBF) with more than 40 million euros. The aim of the project was to connect quantum processing units (QPU) based on superconducting circuits to a supercomputer and to develop interfaces and control tools for this purpose. Through innovative co-design and cooperation between science and industry, science and research should gain access as quickly as possible to a promising future technology that enables new computing methods.

Q-Exa lays the foundations for researching and further developing quantum computing and for accelerating HPC through QPUs. In addition to the hybrid Q-Exa system, specialists at the LRZ and partner institutions of the Munich Quantum Valley also developed the prototype of the Munich Quantum Software Stack (MQSS). This integrates quantum systems into the workflows of supercomputers and is supplemented by other quantum technologies. In addition to the hardware, this program package will soon be available to researchers as an open-source version.

Speaking at a press conference in Munich, Markus Blume, Bavarian State Minister for Science and the Arts, said: “The quantum computing mission is flying at a high pace in Bavaria: the world’s first full integration of a quantum computer into a conventional supercomputer is an international breakthrough and strengthens Bavaria’s position as a global hotspot for one of the defining technologies of the 21st century. The development of the Q-Exa computer is an outstanding success for the Leibniz Supercomputing Centre, IQM, and its partners, as well as our research and technology cooperation Munich Quantum Valley, which has received 300 million euros from the Hightech Agenda Bayern – and yet it is only the beginning: the next milestone will be the opening of the Q-Exa system at the LRZ in a pilot operation for researchers. They will then be able to test and further develop their own application ideas. This will enable the brightest minds in our country to research solutions to problems that are still unthinkable today in a wide range of fields, from medicine and materials science to finance. We are building the future in Bavaria.“

Dr. Jan Goetz, Co-CEO and Co-founder of IQM Quantum Computers, said: “Q-Exa is the first milestone for the integration of quantum computers into high-performance computing. We are very proud of this joint achievement of the Q-Exa consortium, and we hope to be able to further optimise the next generation of our processors with these partners and thus enrich supercomputing and science.”

“We are currently building the future of computing. Q-Exa is a key project for our activities at the LRZ Quantum Integration Center, QIC, and demonstrates the success of co-design. Together with our partners, we have managed to integrate the first quantum computer into our supercomputers in a short timeframe and make it ready for use in science – we are very excited to see how the hybrid system proves itself in everyday work and how we can use it to further develop the future technology of quantum computing,” said Prof. Dieter Kranzlmüller, Chairman of the Board of Directors at LRZ.

“Bringing quantum-accelerated supercomputing to researchers as a powerful tool for their work is very satisfying. Q-Exa shows how, in collaboration with strong partners, we can merge a paradigm-shifting technology like quantum into our existing computing infrastructure, so our users get the best of both worlds: pure innovation and the stability, robustness and hard-won advancements in HPC. We’re excited to see the new science and insights Q-Exa will bring,” added Laura Schulz, head of Quantum Computing and Technologies at LRZ.

“Q-Exa combines two specific strengths of the high-tech location Bavaria – high-performance computing and quantum computing – in Germany’s first hybrid quantum computer. For the research teams of Munich Quantum Valley (MQV) and their industry partners, this important innovation offers unique possibilities for developing novel quantum algorithms and testing promising use cases,” said Prof. Dr. Rudolf Gross, Managing Director, Munich Quantum Valley.

Q-Exa benchmarks:

  • 20-qubit quantum processor unit.
  • Quantum Volume (QV) 32.
  • Entangled Greenberger-Horne-Zeilinger (GHZ) state of 19 qubits without readout error mitigation.
  • Fully entangled 20 qubit GHZ state with readout error mitigation.
  • A median two-qubit (CZ) gate fidelity of 99.46% across 30 qubit pairs, with maximum fidelity over a single pair reaching as high as 99.74%.
  • A median single qubit gate fidelity of 99.94% across 20 qubits, with maximum fidelity over a single qubit reaching as high as 99.95%.

About the LRZ

The Leibniz Supercomputing Centre (LRZ) proudly stands at the forefront of its field as a world-class IT service and computing user facility serving Munich’s top universities as well as research institutions in Bavaria, Germany and Europe. As an institute of the Bavarian Academy of Sciences and Humanities, LRZ has provided a robust, holistic IT infrastructure for its users throughout the scientific community for nearly sixty years. It offers the complete range of resources, services, consulting and support¬–from email, web servers and Internet access to virtual machines, cloud solutions, data storage and the Munich Scientific Network (MWN).

Home to SuperMUC-NG, LRZ is part of Germany’s Gauss Centre for Supercomputing (GCS) and serves as part of the nation’s backbone for the advanced research and discovery possible through high-performance computing (HPC). In addition to current systems, LRZ’s Future Computing Group focuses on the evaluation of emerging Exascale-class architectures and technologies, development of highly scalable machine learning and artificial intelligence applications, and system integration of quantum acceleration with supercomputing systems.

Source: IQM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ARM, Fujitsu Targeting Open-source Software for Power Efficiency in 2-nm Chip

July 19, 2024

Fujitsu and ARM are relying on open-source software to bring power efficiency to an air-cooled supercomputing chip that will ship in 2027. Monaka chip, which will be made using the 2-nanometer process, is based on the Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI projects.). Other tools have joined the CUDA castle siege. AMD Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was recently posted by CERN’s department of experimental physi Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to communities across the globe. As climate change is warming ocea Read more…

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical claims. A paper published on July 10 by researchers in the U. Read more…

Belt-Tightening in Store for Most Federal FY25 Science Budets

July 15, 2024

If it’s summer, it’s federal budgeting time, not to mention an election year as well. There’s an excellent summary of the curent state of FY25 efforts reported in AIP’s policy FYI: Science Policy News. Belt-tight Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI pro Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…


Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Leading Solution Providers


Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow