GM Revs Up Diesel Combustion Modeling on Titan Supercomputer

February 9, 2018

February 9, 2018 – Most car owners in the United States do not think twice about passing over the diesel pump at the gas station. Instead, diesel fuel mostly powers our shipping trucks, boats, buses, and generators—and that is because diesel engines are about 10 percent more fuel-efficient than gasoline, saving companies money transporting large deliveries.

In a model of a 1.6 liter engine cylinder, liquid fuel (shown in red and orange) is converted to fuel vapor under high temperatures during ignition. Image courtesy of Ronald Grover

The downside to diesel engines is that they produce more emissions, like soot and nitrogen oxides, than gasoline engines because of how they combust fuel and air. A gasoline engine uses a spark plug to ignite a fuel-air mixture. A diesel engine compresses air until it is hot enough to ignite diesel fuel sprayed into the cylinder, using more air than necessary to burn all the fuel in a process called lean mixing-controlled combustion.

“We can generally clean up emissions for a gasoline engine with a three-way catalyst,” said Ronald Grover, staff researcher at General Motors (GM) Research and Development. “The problem with diesel is that when you operate lean, you can’t use the conventional three-way catalysts to clean up all the emissions suitably, so you have to add a lot of complexity to the after-treatment system.”

That complexity makes diesel engines heavier and more expensive upfront.

Grover and GM colleagues Jian Gao, Venkatesh Gopalakrishnan, and Ramachandra Diwakar are using the Titan supercomputer at the Oak Ridge Leadership Computing Facility, a U.S. Department of Energy Office of Science User Facility at DOE’s Oak Ridge National Laboratory, to improve combustion models for diesel passenger car engines with an ultimate goal of accelerating innovative engine designs while meeting strict emissions standards.

A multinational corporation that delivered 10 million vehicles to market last year, GM runs its research side of the house, Global R&D Laboratories, to develop new technologies for engines and powertrains.

“We work from a clean sheet of paper, asking ‘What if?’” Grover said. From there, ideas move up to advanced engineering, then to product organization where technology is vetted before it goes into the production pipeline.

For every engine design, GM must balance cost and performance for customers while working within the constraints of emissions regulations. The company also strives to develop exciting new ideas.

“The customer is our compass. We’re always trying to design and improve the engine,” Grover said. “We see constraint, and we’re trying to push that boundary.”

But testing innovative engine designs can run up a huge bill.

“One option is to try some designs, make some hardware, go test it, make some more hardware, go test it, and you continue to do this iterative process until you eventually reach the design that you like,” he said. “But obviously, every design iteration costs money because you’re cutting new hardware.”

Meanwhile, competitors might put their own new designs on the market. To reduce R&D costs, automakers use virtual engine models to computationally simulate and calibrate, or adjust, new designs so that only the best designs are built as prototypes for testing in the real world.

Central to engine design is the combustion process, but studying the intricacies of combustion in a laboratory is difficult and significant computational resources are required to simulate it in a virtual environment.

Combustion is critical to drivability and ensuring seamless operation on the road, but combustion also affects emissions production because emissions are chemical byproducts of combustion’s main ingredients: fuel, air, and heat.

“There are hundreds of thousands of chemical species [types of molecules] to be measured that you have to track and tens of thousands of reactions that you need to simulate,” Grover said. “We have to simplify the chemistry to the point that we can handle it for computational modeling, and to simplify it, sometimes you have to make assumptions. So sometimes we find the model works well in some areas and doesn’t work well in others.”

The combustion process in a car engine—from burning the first drop of fuel to emitting the last discharge of exhaust—can create many thousands of chemical species, including regulated emissions. However, sensors used in experimental testing allow researchers to track only a limited number of species over the combustion process.

“You’re missing a lot of detail in the middle,” Grover said.

Grover’s team wanted to increase the number of species to better understand the chemical reactions taking place during combustion, but in-house computational resources could not compute such complex chemical changes with high accuracy within a reasonable time frame.

To test the limits of their in-house resources, Grover’s team increased the number of chemical species to 766 and planned to simulate combustion across a span of 280 crank angle degrees, which is a measure of engine-cycle progress. An entire engine cycle, with one combustion event, equals 720 crank angle degrees.

“It took 15 days just to compute 150 crank angle degrees. So, we didn’t even finish the calculation in over 2 weeks,” he said. “But we still wanted to model the highest fidelity chemistry package that we could.”

To reduce computing time while increasing the complexity of the chemistry calculations, the GM team would need an extremely powerful computer and a new approach.

A richer recipe for combustion

Grover and the GM team turned to DOE for assistance. Through DOE’s Advanced Scientific Computing Research Leadership Computing Challenge, a competitive peer-reviewed program, they successfully applied for and were awarded time on Titan during 2015 and 2016.

A 27-petaflop Cray XK7 supercomputer with a hybrid CPU–GPU architecture, Titan is the nation’s most powerful computer for open scientific research. To make the most of the computing allocation, Grover’s team worked with Dean Edwards and Charles Finney at ORNL’s National Transportation Research Center and Wael Elwasif of ORNL’s Computer Science and Mathematics Division to optimize combustion models for Titan’s architecture and add chemical species. They also partnered with Russell Whitesides at DOE’s Lawrence Livermore National Laboratory. Whitesides is a developer of a chemical-kinetics solver called Zero-RK, which can use GPUs to accelerate computations. Both the ORNL and LLNL efforts are funded by DOE’s Vehicle Technologies Office.

The team combined Zero-RK with the CONVERGE computational fluid dynamics (CFD) software that Grover uses in-house. CONVERGE is the product of a small-business CFD software company called Convergent Science.

The GM team set out to accomplish three things: use Titan’s GPUs so they could increase the complexity of the chemistry in their combustion models, compare the results of Titan simulations with GM experimental data to measure accuracy, and identify other areas for improvement in the combustion model.

“Their goal was to be able to better simulate what actually happens in the engine,” said Edwards, the ORNL principal investigator.

ORNL’s goal was to help the GM team improve the accuracy of the combustion model, an exercise that could benefit other combustion research down the road. “The first step was to improve the emissions predictions by adding detail back into the simulation,” Edwards said.

“And the bigger the recipe, the longer it takes the computer to solve it,” Finney said.

This was also a computationally daunting step because chemistry does not happen in a vacuum.

“On top of chemical kinetics, for our engine work, we have to model the movement of the piston, the movement of the valves, the spray injection, the turbulent flow—all of these things in addition to the chemistry,” Grover said.

The combustion model also needed to accurately simulate the many different operating conditions created in the engine. To simulate combustion under realistic conditions, GM brought experimental data for about 600 operating conditions—points measuring the balance of engine load (a measure of work output from the engine) and engine speed (revolutions per minute) that mimic realistic driving conditions in which a driver is braking, accelerating, driving uphill or downhill, idling in traffic, and more.

The team simulated a baseline model of 50 chemical species that matched what GM routinely computed in-house, then added 94 chemical species for a total of 144.

“On Titan, we almost tripled our number of species,” Grover said. “We found that by using the Zero-RK GPU solver for chemistry, the chemistry computations ran about 33 percent faster.”

These encouraging results led the team to increase the number of chemical species to 766. What had taken the team over 2 weeks to do in-house—modeling 766 species across 150 crank angle degrees—was completed in 5 days on Titan.

In addition, the team was able to complete the calculations over the desired 280 crank angle degrees, something that wasn’t possible using in-house resources.

“We gathered a lot of success here,” Grover said.

With the first objective met—to see if they could increase simulation detail within a manageable compute time by using Titan’s GPUs—they moved on to compare accuracy against the experimental data.

They measured emissions including nitrogen oxides, carbon monoxide, soot, and unburned hydrocarbons (fuel that did not burn completely).

“Nitrogen oxide emissions in particular are tied to temperature and how a diesel engine combustion system operates,” Edwards said. “Diesel engines tend to operate at high temperatures and create a lot of nitrogen oxides.”

Compared with the baseline Titan simulation, the refined Titan simulation with 766 species improved nitrogen oxide predictions by 10–20 percent.

“That was one of our objectives: Can we model bigger chemistry and learn anything? Yes, we can,” Grover said, noting that the team saw some improvements for soot predictions as well but still struggled with increasing predictive accuracy for carbon monoxide and unburned hydrocarbon emissions.

“That’s not a bad result because we were able to see that maybe there’s something we’re missing other than chemistry,” Grover said.

To determine what that something missing might be, Grover and the GM team successfully competed for a new ALCC award. The successful partnership with researchers at ORNL and LLNL and the DOE VTO and ASCR programs will continue to utilize Titan’s GPUs to study the effect of heat transfer and combustion chamber wall temperatures on the formation and oxidation of emissions species.

“We need to spend more time evaluating the validity of those wall temperatures,” Grover said. “We’re actually going to compute the wall temperatures by simulating the effect of the coolant flow around the engine. We’re hoping better heat transfer predictions will give us a big jump in combination with better chemistry.”

Another result was the demonstration of the GPUs’ ability to solve new problems.

The parallelism boosted by Titan’s GPUs enabled the throughput necessary to calculate hundreds of chemical species across hundreds of operating points. “Applying GPUs for computer-aided engineering could open up another benefit,” Grover said.

If GPUs can help reduce design time, that could boost business.

“That’s faster designs to market,” Grover said. “Usually a company will go through a vehicle development process from end-to-end that could take 4 or 5 years. If you could develop the powertrain faster, then you could get cars to market faster and more reliably.”

Related Publication: J. Gao, R. Grover, V. Gopalakrishnan, R. Diwakar, W. Elwasif, K. Edwards, C. Finney, and R. Whitesides, “Steady-State Calibration of a Diesel Engine in CFD Using a GPU-based Chemistry Solver,” Proceedings of the ASME 2017 Internal Combustion Engine Division Fall Technical Conference, No. 2, doi: 10.1115/ICEF2017-3631.

ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.


Source: Oak Ridge National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first half of 2019. The new machine is intended to replace the eig Read more…

By John Russell

What’s New in HPC Research: October (Part 2)

October 15, 2018

In this bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back on the firs Read more…

By Oliver Peckham

Building a Diverse Workforce for Next-Generation Analytics and AI

October 15, 2018

High-performance computing (HPC) has a well-known diversity problem, and groups such as Women in HPC are working to address it. But while the diversity challenge crosses the science and technology spectrum, it is especia Read more…

By Jan Rowell

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas monster, which would be a first, but at a spec'd 250 single-pre Read more…

By Tiffany Trader

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

DDN, Nvidia Blueprint Unified AI Appliance with Up to 9 DGX-1s

October 4, 2018

Continuing the roll-out of the A3I (Accelerated, Any-Scale AI) storage strategy kicked off in June, DDN today announced a new set of solutions that combine the Read more…

By Tiffany Trader

D-Wave Is Latest to Offer Quantum Cloud Platform

October 4, 2018

D-Wave Systems today launched its cloud platform for quantum computing – Leap – which combines a development environment, community features, and "real-time Read more…

By John Russell

Rise of the Machines – Clarion Call on AI by U.S. House Subcommittee

October 2, 2018

Last week, the top U.S. House of Representatives subcommittee on IT weighed in on AI with a new report - Rise of the Machines: Artificial Intelligence and its Growing Impact on U.S. Policy. Read more…

By John Russell

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This