Gordon Bell Prize Awarded to IBM and Leading University Researchers

November 19, 2015

AUSTIN, Tex., Nov. 19 — Scientists at the University of Texas at Austin, IBM Research, New York University and the California Institute of Technology have been awarded the 2015 Gordon Bell Prize for realistically simulating the forces inside the Earth driving plate tectonics. The team’s work could herald a major step toward better understanding of earthquakes and volcanic activity.

The accomplishment was made using advanced algorithms running on the “Sequoia” IBM BlueGene/Q located at the Lawrence Livermore National Laboratory, one of the fastest supercomputers in the world.

The award-winning research developed innovative algorithms for a mathematical approach called an “implicit solver” to realistically simulate Earth features at unprecedented resolution and accuracy. The team was able to predict the motions of the Earth’s plates and the forces acting on them while also simulating the flow of mantle. Remarkably, the simulation involved more than 600 billion nonlinear equations, a major milestone in computational science and engineering

The simulations were performed on Sequoia, which consists of 96 IBM BlueGene/Q racks, reaching a theoretical peak performance of 20.1 petaflops. Each rack consists of 1,024 computer nodes, hosting 16 core POWER processor chips designed for Big Data computations that are running at 1.6 GHz.

The team’s code reached an unprecedented 97 percent parallel efficiency in scaling the solver to 1.6 million cores, a new world record. This milestone was achieved by rethinking the end-to-end computational framework, from the mathematical model to the numerical algorithms to the massively parallel implementation. The team devised a numerical algorithm that could tackle the vast range of scales present in Earth’s mantle while also mapping efficiently to the massively parallel architecture of the BlueGene/Q supercomputer.

“These advances will open the door to addressing such fundamental questions as what are the main drivers of plate motion and what are the key processes governing the occurrence of great earthquakes,” said Prof. Michael Gurnis, Director of the Seismological Laboratory at the California Institute of Technology.

“While the conventional view was that efficiently solving highly nonlinear equations on millions of cores would be intractable, we demonstrated that with careful redesign of discretization, algorithms, solvers and implementation, it would be possible,” said Prof. Georg Stadler of New York University’s Courant Institute of Mathematical Sciences.

“This work has application to a much broader class of models in science and engineering involving complex multiscale behavior,” said Omar Ghattas, Director of the Center for Computational Geosciences at the Institute for Computational Engineering and Sciences and Professor of Geological Sciences and of Mechanical Engineering at the University of Texas at Austin.

Despite being an underlying cause for devastating earthquakes, volcanoes and tsunamis, scientists lack answers to many of the fundamental principles behind the flow of the mantle. In fact, understanding this “mantle convection” has been designated as one of the “10 Grand Research Questions in Earth Sciences” by the U.S. National Academies.

“We are only beginning to demonstrate how the combination of advanced algorithms, supercomputing and Big Data drawn from sensors and the Internet of Things can realistically simulate the most extreme nonlinear, heterogeneous forces of nature”, said Costas Bekas, manager of Foundations of Cognitive Solutions, IBM Research – Zurich. “We are exploring new ways to apply the availability of tremendous amounts of field sensor data and cognitive computing to a topic and then enable practitioners to reduce the time to solution from years to weeks and even days for everything from inventing a new material to discovering an untapped source of energy.”

Authors of the paper detailing the work include:

  • Johann Rudi – The University of Texas at Austin
  • Cristiano I. Malossi – IBM Corporation
  • Tobin Isaac – The University of Texas at Austin
  • Georg Stadler – New York University
  • Michael Gurnis – California Institute of Technology
  • Peter W. J. Staar – IBM Corporation
  • Yves Ineichen – IBM Corporation
  • Costas Bekas – IBM Corporation
  • Alessandro Curioni – IBM Corporation
  • Omar Ghattas – The University of Texas at Austin

IBM scientists have now been awarded the Gordon Bell Prize six times, most recently in 2013.

The team’s research was reported in the SC15 paper “An Extreme-Scale Implicit Solver for Complex PDEs: Highly Heterogeneous Flow in Earth’s Mantle.” The paper is available from http://dl.acm.org/citation.cfm?doid=2807591.2807675

About the Gordon Bell Prize

The Gordon Bell Prize recognizes the extraordinary progress made each year in the innovative application of parallel computing to challenges in science, engineering, and large-scale data analytics. Prizes may be awarded for peak performance or special achievements in scalability and time-to-solution on important science and engineering problems. Financial support of the $10,000 prize is made possible by Gordon Bell, a pioneer in high-performance and parallel computing.

About IBM Research

Now in its 70th year, IBM Research continues to define the future of information technology with more than 3,000 researchers in 12 labs located across six continents. Scientists from IBM Research have produced six Nobel Laureates, 10 U.S. National Medals of Technology, five U.S. National Medals of Science, six Turing Awards, six Gordon Bell Prizes, 19 inductees in the National Academy of Sciences and 20 inductees into the U.S. National Inventors Hall of Fame –the most of any company. For more information, please visit www.research.ibm.com

Source: IBM

editorialfeature

 

 

 

 

http://www.hpcwire.com/2015-supercomputing-conference/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community and their demand for high compute power in low precision for Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implement a neural network (NN). Their novel architecture, reporte Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing the pinnacle of HPE's HPC portfolio. After announcing its i Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the increasingly important goals of data best practices and work Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated, analysts said the acquisition would cement Nvidia’s stat Read more…

By George Leopold

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Summer Reading: Here’s a Quantum Advantage You Can Bet On!

August 3, 2020

While quantum computing researchers today vigorously chase a demonstration of a quantum advantage – an application which when run on a quantum computer provides sufficient advantage to warrant switching from a classica Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

PEARC20 Plenary Introduces Five Upcoming NSF-Funded HPC Systems

July 30, 2020

Five new HPC systems—three National Science Foundation-funded “Capacity” systems and two “Innovative Prototype/Testbed” systems—will be coming onlin Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Dominates Latest MLPerf Training Benchmark Results

July 29, 2020

MLPerf.org released its third round of training benchmark (v0.7) results today and Nvidia again dominated, claiming 16 new records. Meanwhile, Google provided e Read more…

By John Russell

$39 Billion Worldwide HPC Market Faces 3.7% COVID-related Drop in 2020

July 29, 2020

Global HPC market revenue reached $39 billion in 2019, growing a healthy 8.2 percent over 2018, according to the latest analysis from Intersect360 Research. A 3 Read more…

By Tiffany Trader

Agenting Change: PEARC20 Keynote Encourages Cultural Change to Make Tech Better, More Diverse

July 29, 2020

The tech world will need to become more diverse if it is to thrive and survive, said Cherri Pancake, director of the Northwest Alliance for Computational Resear Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This