Interview: Gordon Bell Prize Winners Embrace Summit to Advance COVID-19 Research

February 4, 2021

Feb. 4, 2021 — The shift to remote work across the globe was one of the hallmarks of 2020. This shift has transcended industry and geography – and it has even impacted the scientists and researchers responsible for studying COVID-19, its effects, and potential treatments and vaccines. But even in this unusual working environment, a group of researchers across America went to remarkable lengths – with the help of IBM’s Summit supercomputer – to better understand the structure and replication of the COVID-19 virus.

For their efforts, the group was recently awarded the first-of-its-kind Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. The prize recognizes outstanding research achievement toward the understanding of the COVID-19 pandemic through the use of high-performance computing (HPC).

Photo: Oak Ridge National Laboratory

In their paper, the winning team developed an AI-driven workflow that leverages HPC to explore the time-dependent dynamics of molecular systems. They then used this workflow to investigate the mechanisms of infectivity of the SARS-CoV-2 spike protein, the main infection component of the COVID-19 virus.

IBM spoke to three of the scientists involved – Rommie Amaro, Professor and Endowed Chair, Chemistry and Biochemistry, UC San Diego; Arvind Ramanathan, computational biologist in the Data Science and Learning Division at Argonne National Laboratory; and Bronson Messer, Director of Science for the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory – about their research, the impact of Summit and AI on their work, and how they were able to collaborate and succeed in a remote work environment.

Why did you use Summit for this research over other computing systems? How did it make a difference?

Messer: Summit is a unique platform, and I always say the machines we run have more in common with the Hubble Space Telescope or the Large Hadron Collider than the laptop or desktop in your home office. Summit allows for true scientific simulation rather than more common proofs of concept on other systems.

Amaro: Summit was made for this type of research. Our goal was to create a full, dynamic picture of the virus and the structure of the spike protein and how it interacts with other proteins, with human cells, and with antibodies.

Summit allowed us to look beyond static images of the spike protein in different isolated situations, and create a fuller, more realistic picture of the entire viral envelope, including the viral membranes and surrounding proteins. These simulations are also pretty big, and this one was among the most significant that has ever been successfully run. Using Summit was faster by a factor of 2-3x over other systems, which is considerable given the data we were working with.

How important were Summit’s AI capabilities throughout the course of this research project?

Messer: Summit is the world’s smartest supercomputer because of the depth and breadth of its AI stack and how it can be customized. That speaks directly to our mission and how we want to use Summit and make it available to people.

Ramanathan: I’ve called this a “marriage made in heaven” because many of these AI models were customized for Summit to get the maximum performance out of it. There were certain operations and certain things that we optimized in such a way to get even more bandwidth. We were also doing the optimization of the settings of hyperparameters, which we had to get right as these simulations are running. So, there was an algorithmic side of the story where we developed a new model on the Summit system so we could train faster, and then we also looked at various ways in which we could get the optimized model to scale and learn from the data. The whole point was to take the entire virus simulation Rommie was running and ask the same questions.

Can you elaborate on the importance of your research for ongoing vaccine efforts, both for COVID-19 and future viruses?

Amaro: One of the main limitations of some experimental techniques is the inability to see the shield of sugars that surrounds cells in the human body. Viruses have evolved the ability to cloak themselves in this shield so that when they are in the body they don’t get detected as an invader by our immune systems.

The COVID-19 vaccines in development were selected back in January, but with this computing we’ve been able to rebuild that sugary shield and better understand how it is moving. That was one of the main science outcomes here, learning more about what the spike protein really looks like. We wanted to know where the shield was, and just as important, where it was not, because that leaves areas of vulnerability. That is also where neutralizing antibodies can bind, and where drug designers could take aim with vaccines going forward.

You carried out this research in the same remote working environment that so many have experienced this year. How were you able to collaborate so successfully across different parts of the country on a project that was so important and time-critical?

Amaro: I have not been back to the office since March, so this was definitely a new way of working. These projects also typically require more formal proposals and evaluations that can be time consuming before the work begins. In this case, the project came out of the HPC Consortium, so we had access to Summit much faster. That was a special thing which allowed us to get to work more quickly. This is a very unique time to be a scientist and the project progressed very organically.

Ramanathan: There were 29 authors on the paper, so to have everyone working together and driving in the same direction was special. It was a newer venue for all of us to work in and feel part of a community. We were able to enable that through collaboration and it led to a lot of innovative thinking on the way we approached things. And of course, the Slack channel just exploded for all of us!


Source: IBM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Researchers Propose New Solution to Quantum Internet Transmission Problem

July 22, 2024

Getting intact qubits from here-to-there is the basic challenge for any quantum internet scheme. Now, scientists from the University of Chicago, Stanford University, and California Institute of Technology have introduced Read more…

Can Cerabyte Crack the $1-Per-Petabyte Barrier with Ceramic Storage?

July 20, 2024

A German startup named Cerabyte is hoping to solve the burgeoning market for secondary and archival data storage with a novel approach that uses lasers to etch bits onto glass with a ceramic coating. The “grey ceramic� Read more…

Weekly Wire Roundup: July 15-July 19, 2024

July 19, 2024

It's summertime (for most of us), and the HPC-related headlines aren't as plentiful as they once were. But not everything has to happen at high tide-- this week still had some waves! Idaho National Laboratory's Bitter Read more…

ARM, Fujitsu Targeting Open-source Software for Power Efficiency in 2-nm Chip

July 19, 2024

Fujitsu and ARM are relying on open-source software to bring power efficiency to an air-cooled supercomputing chip that will ship in 2027. Monaka chip, which will be made using the 2-nanometer process, is based on the Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI projects.). Other tools have joined the CUDA castle siege. AMD Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was recently posted by CERN’s department of experimental physi Read more…

Researchers Propose New Solution to Quantum Internet Transmission Problem

July 22, 2024

Getting intact qubits from here-to-there is the basic challenge for any quantum internet scheme. Now, scientists from the University of Chicago, Stanford Univer Read more…

Can Cerabyte Crack the $1-Per-Petabyte Barrier with Ceramic Storage?

July 20, 2024

A German startup named Cerabyte is hoping to solve the burgeoning market for secondary and archival data storage with a novel approach that uses lasers to etch Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI pro Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire