GPUs Now Accelerate Almost 600 HPC Apps

November 16, 2018

Nov. 16, 2018 — Just over 10 years ago accelerated applications didn’t exist. Today, almost 600 are accelerated by NVIDIA GPUs. The reason: GPU acceleration works. And that’s why it’s been put to work on the hardest computing jobs on earth.

Image courtesy of NVIDIA.

These are apps that get work done in physics, bioscience, molecular dynamics, chemistry and weather forecasting. The world’s 15 most popular HPC applications are all GPU accelerated. In the last year, we’ve added more than 100 applications to our NVIDIA GPU Applications Catalog. More are coming.

A report by Intersect 360 research identified the key applications running in the data center. All the top 15 apps were GPU accelerated. It’s a murderer’s row of hard-core science apps. They include:

  • GROMACS (Chemistry) – Molecular dynamics application for simulating Newtonian equations of motion for systems with hundreds to millions of particles.
  • ANSYS (Fluid Dynamics Analysis) – Simulates the interaction of liquids and gases with surfaces.
  • Gaussian (Chemistry) – Predicts energies, molecular structures and vibrational frequencies of molecular systems.
  • VASP (Chemistry) – Performing ab-initio quantum-mechanical molecular dynamics simulations.
  • NAMD (Chemistry) – High-performance simulation of large biomolecular systems.
  • Simulia Abaqus (Structural Analysis) – Simulation and analysis of structural mechanics.
  • WRF (Weather/Environment Modeling) – Numerical weather prediction system designed for both atmospheric research and operational forecasting applications.
  • OpenFOAM (Fluid Dynamics Analysis) – Solver library for general-purpose CFD software
  • ANSYS (Structural Analysis) – Models 3D full-wave electromagnetic fields in high-frequency and high-speed electronic components.
  • LS-DYNA (Structural Analysis) – Simulation and analysis tool for structural mechanics.
  • BLAST (Bioscience) – One of the most widely used bioinformatics tools.
  • LAMMPS (Chemistry) – A classical molecular dynamics package.
  • Amber (Chemistry) – A molecular dynamics application developed for the simulation of biomolecular systems.
  • Quantum Espresso (Chemistry) – An integrated suite of computer codes for electronic structure calculations and materials modeling at the nanoscale.
  • GAMESS (Chemistry) – Computational chemistry suite used to simulate atomic and molecular electronic structure.

These tools don’t get incremental performance gains. GPU acceleration changes the economics of the data center. Servers with NVIDIA GPUs typically speed up the application performance by 10x or more.

And since the application performance does not scale linearly with the number of CPU servers, each GPU-accelerated server provides the performance of even more CPU servers than what just the speed-ups would imply. So you can meet the growing demand for computing — and save money.

Not bad for 10 years’ worth of work.

Predicting the Weather

Weather prediction looks hard. And it might be even harder than it looks. No surprise, then, that weather prediction is a big piece of HPC. Important, too. Reliable weather forecasts save lives. They also drive economic decisions in aviation, energy and utilities, insurance, retail and other industries.

But weather prediction requires massive computing resources. Two reasons: geometric scale (especially for global weather predictions), and the enormous number of variables that describe the state of the atmosphere.

Today weather prediction is limited by the amount of computing and application performance available. So today’s models are limited to low-resolution simulations, such as 12-km resolution.

But that leaves out important details, such as the impact of clouds, which play an important role in weather patterns by reflecting solar radiation. Going to 1-km cloud-resolving resolution can improve forecasting. But it requires 1,700x more application performance.

GPU acceleration can heft weather forecasts over that gap.

Accelerating Aerodynamics Simulations with FUN3D

Aircraft, spacecraft, automobiles. If it goes fast, large-scale aerodynamic simulations can help it go faster — and more efficiently.

The NASA Langley Research Center develops FUN3D computational fluid dynamics software to simulate fluid flow for a broad range of aerodynamics applications. This application consumes more cycles at NASA’s Pleiades supercomputer than any other. And GPU acceleration enables a server with six NVIDIA V100 Tensor Core GPUs to provide 30x higher performance than a dual-socket CPU server while running these simulations.

Takeaway: the performance on GPUs scales very well to enable efficient computation of the largest and the most complex simulations. NASA has shown that a thousand GPU servers on Summit supercomputer can do the work of over a million CPU cores. And for a fraction of the energy costs.

Performance That Keeps Growing

We have deep expertise in all accelerated computing domains. Combined with an ecosystem of more than 1 million developers, this results in a platform that’s constantly improving. This provides higher application performance over time on the same GPU-accelerated servers.

For instance, on a basket of 11 HPC applications, a server with 4 NVIDIA Tesla P100 GPUs now runs 2x faster compared to its performance from two years ago. Pair improvements in the software stack and GPU architecture advancements and you get even bigger performance gains.

With a single platform, you can now accelerate applications across a variety of HPC domains — scientific computing, industrial simulations, deep learning and machine learning. The harder the job, the bigger the payoff. So go ahead and accomplish wonders — or get your work done fast enough to see your kids — with GPU-accelerated applications.

To see the full list of GPU-accelerated applications, check out the NVIDIA GPU Applications Catalog.


Source: NVIDIA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Extends Access to Its Leadership Systems Blue Waters & Frontera

December 14, 2018

The National Science Foundation is seeking supplemental requests for access on its leadership-class computers Blue Waters and Frontera to enable "fundamental science and engineering research that would otherwise not be p Read more…

By Staff

CFD on ORNL’s Titan Simulates Cleaner, Low-MPG ‘Opposed Piston’ Engine

December 13, 2018

Pinnacle Engines is out to substantially improve vehicle gasoline efficiency and cut greenhouse gas emissions with a new motor based on an “opposed piston” design that the company hopes will be widely adopted while t Read more…

By Doug Black

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC) is procuring from Atos in two phases over the next year-an Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

4 Ways AI Analytics Projects Fail — and How to Succeed

“How do I de-risk my AI-driven analytics projects?” This is a common question for organizations ready to modernize their analytics portfolio. Here are four ways AI analytics projects fail—and how you can ensure success. Read more…

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Google and Intel. Of the seven benchmarks encompassed in version Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Goog Read more…

By Tiffany Trader

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to pr Read more…

By Doug Black

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--the study of shapes--seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns. Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This