Gravitational Waves Detected 100 Years After Einstein’s Prediction

February 12, 2016

Feb. 12 — For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at the earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein’s 1915 general theory of relativity and opens an unprecedented new window onto the cosmos.

Gravitational waves carry information about their dramatic origins and about the nature of gravity that cannot otherwise be obtained. Physicists have concluded that the detected gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.

The gravitational waves were detected on Sept. 14, 2015, at 5:51 a.m. Eastern Daylight Time (9:51 UTC) by both of the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, La., and Hanford, Wash. The LIGO Observatories are funded by the National Science Foundation, and were conceived, built, and are operated by Caltech and Massachusetts Institute of Technology. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors.

NCSA’s Role in the Discovery

Thirty years ago, the National Center for Supercomputing Applications (NCSA) was founded at the University of Illinois at Urbana-Champaign by Larry Smarr based on the premise that numerically modeling scientific problems, such as the colliding of black holes, required high-performance computing to make progress. Smarr’s doctoral thesis had itself been on the modeling of the head-on collision of two black holes. In 2014, Smarr was honored with the Golden Goose award to highlight the impact that his black hole research had on creating NCSA and the NSF supercomputing centers program which led to the public Internet revolution via the creation of the NCSA Mosaic web browser, the first browser to have visual features like icons, bookmarks, and pictures, and was easy to use.

At NCSA, Smarr formed a numerical group, led by Edward Seidel—the current NCSA director. The group quickly became a leader in applying supercomputers to black hole and gravitational wave problems. For example, in 1994 the very first 3-dimension simulation of two colliding black holes providing computed gravitational waveforms was carried out at NCSA by this group in collaboration with colleagues at Washington University.

NCSA as a center has continued to support the most complex problems in numerical relativity and relativistic astrophysics, including working with several groups addressing models of gravitational waves sources seen by LIGO in this discovery. Even more complex simulations will be needed for anticipated future discoveries such as colliding neutron stars and black holes or supernovae explosions.

NCSA has also played a role in developing the tools needed for simulating relativistic systems. The work of Seidel’s NCSA group led to the development of the Cactus Framework, a modular and collaborative framework for parallel computing which since 1997 has supported numerical relativists as well as other disciplines developing applications to run on supercomputers at NCSA and elsewhere. Built on the Cactus Framework, the NSF-supported Einstein Toolkit developed at Georgia Tech, RIT, LSU, AEI, Perimeter Institute and elsewhere now supports many numerical relativity groups modeling sources important for LIGO on the NCSA Blue Waters supercomputer.

“This historic announcement is very special for me. My career has centered on understanding the nature of black hole systems, from my research work in numerical relativity, to building collaborative teams and technologies for scientific research, and then also having the honor to be involved in LIGO during my role as NSF Assistant Director of Mathematics and Physical Sciences. I could not be more excited that the field is advancing to a new phase,” said Seidel, who is also Founder Professor of Physics and professor of astronomy at Illinois.

Gabrielle Allen, professor of astronomy at Illinois and NCSA associate director, previously led the development of the Cactus Framework and the Einstein Toolkit. “NCSA was a critical part of inspiring and supporting the development of Cactus for astrophysics. We held our first Cactus workshop at NCSA and the staff’s involvement in our projects was fundamental to being able to demonstrate not just new science but new computing technologies and approaches,” said Allen.

Eliu Huerta, member of the LIGO Scientific Collaboration since 2011 and current leader of the relativity group at NCSA, is a co-author of the paper to be published in Physical Review Letters. Huerta works at the interface of analytical and numerical relativity, specializing in the development of modeled waveforms for the detection and interpretation of gravitational wave signals. Huerta uses these models to infer the astrophysical properties of compact binary systems, and shed light on the environments in which they form and coalesce.

“The first direct observation of gravitational waves from a binary black hole system officially inaugurates the field of gravitational wave astronomy. There can be no better way to celebrate the first centenary of Einstein’s prediction of gravitational waves. We can gladly say that Einstein is right, and that the beautiful mathematical framework he developed to describe gravity is valid even in the most extreme environments. A new era has begun, and we will be glad to discover astrophysical objects we have never dreamt of,” said Huerta.

Stuart Shapiro, a professor of physics and astronomy at Illinois, was appointed an NCSA research scientist by Smarr two decades ago. A leading expert in the theory that underpinned the search for gravitational waves, he has developed software tools that can simulate on NCSA supercomputers like Blue Waters the very binary black hole merger and gravitational waves now detected by LIGO. Shapiro said he is thrilled by the discovery.

“This presents the strongest confirmation yet of Einstein’s theory of general relativity and the cleanest evidence to date of the existence of black holes. The gravitational waves that LIGO measures can only be generated by merging black holes—exotic relativistic objects from which nothing, including light, can escape from their interior,” said Shapiro.

“Work at NCSA helps open windows into the universe,” said Peter Schiffer, vice chancellor for research at the University of Illinois at Urbana-Champaign. “This is a wonderful fundamental discovery, and it’s exciting that the high performance computing capabilities that we developed to address challenges like this one are also being used to solve other significant societal problems.”

Black holes are formed when massive stars undergo a catastrophic gravitational collapse. The gravitational field of these ultra compact objects is so strong that not even light can escape from them.

Gravitational waves are generated when ultra compact objects—black holes, neutron stars or white dwarfs—are accelerated to velocities that are a significant fraction of the speed of light. Gravitational waves couple weakly to matter, which means that they can travel unimpeded throughout the Universe and that only extremely sensitive detectors such as LIGO can detect them.

LIGO research is carried out by the LIGO Scientific Collaboration, a group of more than 1,000 scientists from universities around the United States and in 14 other countries. More than 90 universities and research institutes in the collaboration develop detector technology and analyze data; approximately 250 students are strong contributing members of the collaboration.

The LIGO Scientific Collaboration’s detector network includes the LIGO interferometers and the GEO600 detector. The GEO team includes scientists at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI), Leibniz Universität Hannover, along with partners at the University of Glasgow, Cardiff University, the University of Birmingham, other universities in the United Kingdom, and the University of the Balearic Islands in Spain.

LIGO was originally proposed as a means of detecting these gravitational waves in the 1980s by Rainer Weiss, professor of physics, emeritus, from MIT; Kip Thorne, Caltech’s Richard P. Feynman Professor of Theoretical Physics, emeritus; and Ronald Drever, professor of physics, emeritus, also from Caltech.

Virgo research is carried out by the Virgo Collaboration, consisting of more than 250 physicists and engineers belonging to 19 different European research groups: six from Centre National de la Recherche Scientifique (CNRS) in France; eight from the Istituto Nazionale di Fisica Nucleare (INFN) in Italy; two in the Netherlands with Nikhef; the Wigner RCP in Hungary; the POLGRAW group in Poland and the European Gravitational Observatory (EGO), the laboratory hosting the Virgo detector near Pisa in Italy.

The discovery was made possible by the enhanced capabilities of Advanced LIGO, a major upgrade that increases the sensitivity of the instruments compared to the first generation LIGO detectors, enabling a large increase in the volume of the universe probed—and the discovery of gravitational waves during its first observation run.

The U.S. National Science Foundation leads in financial support for Advanced LIGO. Funding organizations in Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council, STFC) and Australia (Australian Research Council) also have made significant commitments to the project. Several of the key technologies that made Advanced LIGO so much more sensitive have been developed and tested by the German UK GEO collaboration.

Significant computer resources have been contributed by the AEI Hannover Atlas Cluster, the LIGO Laboratory, Syracuse University, and the University of Wisconsin-Milwaukee. Several universities designed, built, and tested key components for Advanced LIGO: The Australian National University, the University of Adelaide, the University of Florida, Stanford University, Columbia University in the City of New York and Louisiana State University.

Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This