Harvard and QuEra Collaborators Observe Quantum Speed-Up in Optimization Problems

May 5, 2022

BOSTON, May 5, 2022 — A collaboration between Harvard University with scientists at QuEra Computing, MIT, University of Innsbruck and other institutions has demonstrated a breakthrough application of neutral-atom quantum processors to solve problems of practical use. The work led by Professors Mikhail Lukin and Markus Greiner at Harvard and Vladan Vuletic at MIT, titled “Quantum Optimization of Maximum Independent Set using Rydberg Atom Arrays”, was published on May 5th, 2022, in Science Magazine.

Previously, neutral-atom quantum processors had been proposed to efficiently encode certain hard combinatorial optimization problems. In this landmark publication, the authors not only deploy the first implementation of efficient quantum optimization on a real quantum computer, but also showcase unprecedented quantum hardware power.

The calculations were performed on Harvard’s quantum processor of 289 qubits operating in the analog mode, with effective circuit depths up to 32. Unlike in previous examples of quantum optimization, the large system size and circuit depth used in this work made it impossible to use classical simulations to pre-optimize the control parameters. A quantum-classical hybrid algorithm had to be deployed in a closed loop, with direct, automated feedback to the quantum processor.

This combination of system size, circuit depth, and outstanding quantum control culminated in a quantum leap: problem instances were found with empirically better-than-expected performance on the quantum processor versus classical heuristics. Characterizing the difficulty of the optimization problem instances with a “hardness parameter,” the team identified cases that challenged classical computers, but that were more efficiently solved with the neutral-atom quantum processor. A super-linear quantum speed-up was found compared to a class of generic classical algorithms. QuEra’s open-source packages GenericTensorNetworks.jl and Bloqade.jl were instrumental in discovering hard instances and understanding quantum performance.

“A deep understanding of the underlying physics of the quantum algorithm as well as the fundamental limitations of its classical counterpart allowed us to realize ways for the quantum machine to achieve a speedup,” says Madelyn Cain, Harvard graduate student and one of the lead authors. The importance of match-making between problem and quantum hardware is central to this work: “In the near future, to extract as much quantum power as possible, it is critical to identify problems that can be natively mapped to the specific quantum architecture, with little to no overhead,” said Shengtao Wang, Senior Scientist at QuEra Computing and one of the coinventors of the quantum algorithms used in this work, “and we achieved exactly that in this demonstration.” 

The “maximum independent set” problem, solved by the team, is a paradigmatic hard task in computer science and has broad applications in logistics, network design, finance, and more. The identification of classically challenging problem instances with quantum-accelerated solutions paves the path for applying quantum computing to cater to real-world industrial and social needs.

“These results represent the first step towards bringing useful quantum advantage to hard optimization problems relevant to multiple industries.”, added Alex Keesling CEO of QuEra Computing and co-author on the published work. “We are very happy to see quantum computing start to reach the necessary level of maturity where the hardware can inform the development of algorithms beyond what can be predicted in advance with classical compute methods. Moreover, the presence of a quantum speedup for hard problem instances is extremely encouraging. These results help us develop better algorithms and more advanced hardware to tackle some of the hardest, most relevant computational problems.”

This work was supported by DARPA, NSF, DOE, ARO, QuEra Computing and AWS.

About QuEra Computing Inc.

QuEra Computing Inc. was established to build the world’s most powerful quantum computers to answer currently impossible problems. We build the full stack, co-developing hardware, software, and algorithms to enable the highest degree of achievable useful quantum advantage. Our hardware is based on patented research from Harvard and MIT, using highly scalable and programmable neutral-atom arrays as an industry leading platform. We aim to tackle critical but classically intractable problems for commercial applications in diverse sectors, providing access to machines with 256 qubits ideally suited to address quantum optimization and simulation problems.


Source: QuEra Computing Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Touts Strong Results on Financial Services Inference Benchmark

February 3, 2023

The next-gen Hopper family may be on its way, but that isn’t stopping Nvidia’s popular A100 GPU from leading another benchmark on its way out. This time, it’s the STAC-ML inference benchmark, produced by the Securi Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnerships in strategic technologies and defense industries across th Read more…

Pittsburgh Supercomputing Enables Transparent Medicare Outcome AI

February 2, 2023

Medical applications of AI are replete with promise, but stymied by opacity: with lives on the line, concerns over AI models’ often-inscrutable reasoning – and as a result, possible biases embedded in those models Read more…

Europe’s LUMI Supercomputer Has Officially Been Accepted

February 1, 2023

“LUMI is officially here!” proclaimed the headline of a blog post written by Pekka Manninen, director of science and technology for CSC, Finland’s state-owned IT center. The EuroHPC-organized supercomputer’s most Read more…

AWS Solution Channel

Shutterstock 2069893598

Cost-effective and accurate genomics analysis with Sentieon on AWS

This blog post was contributed by Don Freed, Senior Bioinformatics Scientist, and Brendan Gallagher, Head of Business Development at Sentieon; and Olivia Choudhury, PhD, Senior Partner Solutions Architect, Sujaya Srinivasan, Genomics Solutions Architect, and Aniket Deshpande, Senior Specialist, HPC HCLS at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1453953692

Microsoft and NVIDIA Experts Talk AI Infrastructure

As AI emerges as a crucial tool in so many sectors, it’s clear that the need for optimized AI infrastructure is growing. Going beyond just GPU-based clusters, cloud infrastructure that provides low-latency, high-bandwidth interconnects and high-performance storage can help organizations handle AI workloads more efficiently and produce faster results. Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for more computing specifically targeted at artificial intellige Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnership Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for Read more…

Roadmap for Building a US National AI Research Resource Released

January 31, 2023

Last week the National AI Research Resource (NAIRR) Task Force released its final report and roadmap for building a national AI infrastructure to include comput Read more…

PFAS Regulations, 3M Exit to Impact Two-Phase Cooling in HPC

January 27, 2023

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals,” pose a number of health risks to humans, with more suspected but not yet confirmed Read more…

Multiverse, Pasqal, and Crédit Agricole Tout Progress Using Quantum Computing in FS

January 26, 2023

Europe-based quantum computing pioneers Multiverse Computing and Pasqal, and global bank Crédit Agricole CIB today announced successful conclusion of a 1.5-yea Read more…

Critics Don’t Want Politicians Deciding the Future of Semiconductors

January 26, 2023

The future of the semiconductor industry was partially being decided last week by a mix of politicians, policy hawks and chip industry executives jockeying for Read more…

Riken Plans ‘Virtual Fugaku’ on AWS

January 26, 2023

The development of a national flagship supercomputer aimed at exascale computing continues to be a heated competition, especially in the United States, the Euro Read more…

Leading Solution Providers

Contributors

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire