Helmut-Schmidt University Researchers Use HPC in Hopes of Restraining the Wind

January 21, 2020

Jan. 21, 2020 — Helmut-Schmidt University scientists combine simulation with experimental investigations to understand complex fluid-structure interactions to design safer buildings.

Technological advancements in materials, architecture, and computer-aided design (CAD) have helped ensure that each new generation of buildings are safer than prior generations. However, intense wind gusts can still cause chaos, exposing flaws in buildings by stressing certain areas, ultimately ripping off roofs of buildings or causing other structural damage.  Lightweight, quick-to-build structures are especially at risk.

Researchers investigating how turbulent wind gusts impact building integrity can design experiments to validate their predictions, constructing model buildings for wind tunnel tests and subjecting them to different wind loads. In recent years, though, high-performance computing (HPC) has allowed scientists to design virtual buildings in high-fidelity simulations to better understand fluid-structure interactions (FSI) between strong winds or wind gusts and buildings.

Recently, researchers from the Helmut-Schmidt University in Hamburg (HSU) have been using a combination of experimental investigations in the HSU lab and numerical simulations on Gauss Centre for Supercomputing (GCS) resources in an effort to design safer buildings.

“In the last few years, there have been a lot of structures built with lightweight materials based on membranous structures, such as stadiums that want to implement covered areas for fans while still keeping parts open,” said Prof. Dr.-Ing. Michael Breuer, principal investigator of the project. “If you have heavy, massive structures, the interaction between the fluid flow, such as wind, and the structure is not so critical in most cases. However, thin, lightweight structures can be easily deformed and ultimately destroyed by the wind or especially wind gusts, and we want to address this issue in our project.”

To that end, the team used the SuperMUC supercomputer at the Leibniz Supercomputing Centre (LRZ), one of the three centers making up GCS, in order to study the complex dynamics between turbulent flows and flexible structures.

Blown away

Researchers across a variety of scientific disciplines struggle to accurately model one of the last unsolved mysteries of physics—the chaotic motion of turbulent fluid flows are notoriously difficult to describe in a realistic way.

In an effort to setup realistic simulations that are still capable of running on supercomputers, many researchers studying turbulence use large-eddy simulations (LES), which allow realistic predictions of turbulence to a certain level of accuracy. Turbulent fluid motions are comprised of a spectrum of “eddies,” which are essentially swirling fluids that create currents moving in different directions. These eddies cascade down to extremely small scales, where they eventually dissipate into heat. LES predictions focus primarily on the larger eddies that are dominating turbulence in a fluid flow. Nevertheless, the effect of the smallest eddies has to be taken into account by appropriate models.

“If you try to simulate turbulence on HPC systems, you are already running into challenges to understand it down to the smallest scales,” Breuer said. “If you are trying to take the interaction with a flexible structure into account, it generates even more length and time scales you have to account for in your simulation. All of this together adds to the complexity and time needed as well as the need for large computing resources.”

The computational challenge lies in the multi-physics and multi-scale nature of the underlying physical problem—that is, researchers must design a model capable of both simulating very small turbulent motions happening very quickly while also taking large length and time scales into account. Furthermore, the simulations have to run over a long enough period of time to understand the impact the strongly varying fluid flow can have on the building as a whole.

To address the full complexity, the researchers in Hamburg used a step-by-step approach to increasing complexity and detail in their simulations. First, they developed a high-fidelity, three-dimensional computational fluid dynamics (CFD) simulation methodology and coupled that to a finite-element solver for the structural part within a partitioned, but nevertheless strongly coupled solution approach. This tool was extensively validated based on specific FSI test cases, which were experimentally investigated in the wind and water tunnel at the lab. The team carried out these coupled FSI simulations for turbulent flows, but did not take wind gusts into account.

Second, the researchers performed flow simulations for the turbulent flow around static structures that took wind gusts into account in order to understand their effect on the fluid flow and the rigid structure.

The path towards structural safety solutions

In the near future, the team aims to incorporate the added challenge of modeling turbulent wind gusts in the context of high-resolution coupled FSI simulations. That will decisively advance the capabilities to better understand the fluid-structure interaction between turbulent wind loads and flexible structures in order to support the design process of such modern civil engineering buildings.

The team looks forward to using next-generation HPC resources, such as LRZ’s SuperMUC-NG (inaugurated this year, SuperMUC-NG provides a six-fold increase in peak performance over the prior generation SuperMUC machine) in order to run FSI simulations with higher resolutions that can better resolve the complex physical phenomena relevant for the interaction between the fluid flow and the structure.

“By modeling these lightweight structures before building them, we have a better understanding what the influence of different loads on structures can be, which helps to decide how thick the membrane of the stadium roof or awning needs to be, for example,” Breuer said. “This ultimately results in designing safer buildings, and we are trying to contribute to this process.”


Source: Eric Gedenk, Gauss Centre for Supercomputing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Help Wanted: QED-C Survey Spotlights Skills Sought by Quantum Industry

September 28, 2021

Developing an adequate workforce for the young but fast-growing quantum information sciences industry is seen as a critical element for success. Just what that means in terms of skillsets and positions is becoming cleare Read more…

Pittsburgh Supercomputer Powers Machine Learning Analysis of Rare East Asian Stamps

September 27, 2021

Setting aside the relatively recent rise of electronic signatures, personalized stamps have been a popular form of identification for formal documents in East Asia. These identifiers – easily forged, but culturally ubi Read more…

Purdue Researchers Peer into the ‘Fog of the Machine Learning Accelerator War’

September 27, 2021

Making sense of ML performance and benchmark data is an ongoing challenge. In light of last week’s release of the most recent MLPerf (v1.1) inference results, now is perhaps a good time to review how valuable (or not) Read more…

Quantum Monte Carlo at Exascale Could Be Key to Finding New Semiconductor Materials

September 27, 2021

Researchers are urgently trying to identify possible materials to replace silicon-based semiconductors. The processing power in modern computers continues to increase even as the size of the silicon on which components a Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Purdue Researchers Peer into the ‘Fog of the Machine Learning Accelerator War’

September 27, 2021

Making sense of ML performance and benchmark data is an ongoing challenge. In light of last week’s release of the most recent MLPerf (v1.1) inference results, Read more…

Quantum Monte Carlo at Exascale Could Be Key to Finding New Semiconductor Materials

September 27, 2021

Researchers are urgently trying to identify possible materials to replace silicon-based semiconductors. The processing power in modern computers continues to in Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire