Helmut-Schmidt University Researchers Use HPC in Hopes of Restraining the Wind

January 21, 2020

Jan. 21, 2020 — Helmut-Schmidt University scientists combine simulation with experimental investigations to understand complex fluid-structure interactions to design safer buildings.

Technological advancements in materials, architecture, and computer-aided design (CAD) have helped ensure that each new generation of buildings are safer than prior generations. However, intense wind gusts can still cause chaos, exposing flaws in buildings by stressing certain areas, ultimately ripping off roofs of buildings or causing other structural damage.  Lightweight, quick-to-build structures are especially at risk.

Researchers investigating how turbulent wind gusts impact building integrity can design experiments to validate their predictions, constructing model buildings for wind tunnel tests and subjecting them to different wind loads. In recent years, though, high-performance computing (HPC) has allowed scientists to design virtual buildings in high-fidelity simulations to better understand fluid-structure interactions (FSI) between strong winds or wind gusts and buildings.

Recently, researchers from the Helmut-Schmidt University in Hamburg (HSU) have been using a combination of experimental investigations in the HSU lab and numerical simulations on Gauss Centre for Supercomputing (GCS) resources in an effort to design safer buildings.

“In the last few years, there have been a lot of structures built with lightweight materials based on membranous structures, such as stadiums that want to implement covered areas for fans while still keeping parts open,” said Prof. Dr.-Ing. Michael Breuer, principal investigator of the project. “If you have heavy, massive structures, the interaction between the fluid flow, such as wind, and the structure is not so critical in most cases. However, thin, lightweight structures can be easily deformed and ultimately destroyed by the wind or especially wind gusts, and we want to address this issue in our project.”

To that end, the team used the SuperMUC supercomputer at the Leibniz Supercomputing Centre (LRZ), one of the three centers making up GCS, in order to study the complex dynamics between turbulent flows and flexible structures.

Blown away

Researchers across a variety of scientific disciplines struggle to accurately model one of the last unsolved mysteries of physics—the chaotic motion of turbulent fluid flows are notoriously difficult to describe in a realistic way.

In an effort to setup realistic simulations that are still capable of running on supercomputers, many researchers studying turbulence use large-eddy simulations (LES), which allow realistic predictions of turbulence to a certain level of accuracy. Turbulent fluid motions are comprised of a spectrum of “eddies,” which are essentially swirling fluids that create currents moving in different directions. These eddies cascade down to extremely small scales, where they eventually dissipate into heat. LES predictions focus primarily on the larger eddies that are dominating turbulence in a fluid flow. Nevertheless, the effect of the smallest eddies has to be taken into account by appropriate models.

“If you try to simulate turbulence on HPC systems, you are already running into challenges to understand it down to the smallest scales,” Breuer said. “If you are trying to take the interaction with a flexible structure into account, it generates even more length and time scales you have to account for in your simulation. All of this together adds to the complexity and time needed as well as the need for large computing resources.”

The computational challenge lies in the multi-physics and multi-scale nature of the underlying physical problem—that is, researchers must design a model capable of both simulating very small turbulent motions happening very quickly while also taking large length and time scales into account. Furthermore, the simulations have to run over a long enough period of time to understand the impact the strongly varying fluid flow can have on the building as a whole.

To address the full complexity, the researchers in Hamburg used a step-by-step approach to increasing complexity and detail in their simulations. First, they developed a high-fidelity, three-dimensional computational fluid dynamics (CFD) simulation methodology and coupled that to a finite-element solver for the structural part within a partitioned, but nevertheless strongly coupled solution approach. This tool was extensively validated based on specific FSI test cases, which were experimentally investigated in the wind and water tunnel at the lab. The team carried out these coupled FSI simulations for turbulent flows, but did not take wind gusts into account.

Second, the researchers performed flow simulations for the turbulent flow around static structures that took wind gusts into account in order to understand their effect on the fluid flow and the rigid structure.

The path towards structural safety solutions

In the near future, the team aims to incorporate the added challenge of modeling turbulent wind gusts in the context of high-resolution coupled FSI simulations. That will decisively advance the capabilities to better understand the fluid-structure interaction between turbulent wind loads and flexible structures in order to support the design process of such modern civil engineering buildings.

The team looks forward to using next-generation HPC resources, such as LRZ’s SuperMUC-NG (inaugurated this year, SuperMUC-NG provides a six-fold increase in peak performance over the prior generation SuperMUC machine) in order to run FSI simulations with higher resolutions that can better resolve the complex physical phenomena relevant for the interaction between the fluid flow and the structure.

“By modeling these lightweight structures before building them, we have a better understanding what the influence of different loads on structures can be, which helps to decide how thick the membrane of the stadium roof or awning needs to be, for example,” Breuer said. “This ultimately results in designing safer buildings, and we are trying to contribute to this process.”


Source: Eric Gedenk, Gauss Centre for Supercomputing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Simulations Validate NASA Crash Testing

February 17, 2020

Car crash simulation is already a challenging supercomputing task, requiring pinpoint estimation of how hundreds of components interact with turbulent forces and human bodies. Spacecraft crash simulation is far more diff Read more…

By Oliver Peckham

What’s New in HPC Research: Quantum Clouds, Interatomic Models, Genetic Algorithms & More

February 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or at least, pull off the cloud HPC equivalent. As part of thei Read more…

By Oliver Peckham

ORNL Team Develops AI-based Cancer Text Mining Tool on Summit

February 13, 2020

A group of Oak Ridge National Laboratory researchers working on the Summit supercomputer has developed a new neural network tool for fast extraction of information from cancer pathology reports to speed research and clin Read more…

By John Russell

Nature Serves up Another Challenge to Quantum Computing?

February 13, 2020

Just when you thought it was safe to assume quantum computing – though distant – would eventually succumb to clever technology, another potentially confounding factor pops up. It’s the Heisenberg Limit (HL), close Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Researchers Enlist Three Supercomputers to Apply Deep Learning to Extreme Weather

February 12, 2020

When it comes to extreme weather, an errant forecast can have serious effects. While advance warning can give people time to prepare for the weather as it did with the polar vortex last year, the absence of accurate adva Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Intel Stopping Nervana Development to Focus on Habana AI Chips

February 3, 2020

Just two months after acquiring Israeli AI chip start-up Habana Labs for $2 billion, Intel is stopping development of its existing Nervana neural network proces Read more…

By John Russell

Lise Supercomputer, Part of HLRN-IV, Begins Operations

January 29, 2020

The second phase of the build-out of HLRN-IV – the planned 16 peak-petaflops supercomputer serving the North-German Supercomputing Alliance (HLRN) – is unde Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This