How Argonne Is Pushing the Boundaries of Quantum Tech Research

April 11, 2023

April 11, 2023 — The U.S. Department of Energy’s (DOE) Argonne National Laboratory is making exciting advances in quantum information science (QIS). QIS explores how tiny particles sense and relay information in new ways. The research could lead to a quantum computer that performs previously impossible calculations or an exceptionally secure network for transmitting data.

Capabilities at the Quantum Matter and Devices laboratory at Argonne’s Center for Nanoscale Materials aid in development of quantum materials and devices. Credit: Argonne.

The recent milestones play out on small scales: across the space of a few seconds or across a single layer of atoms. Though measured in minuscule increments, each advance contributes to new ways to harness quantum mechanics for computing, communication and sensing.

Argonne is a hub for quantum technology research, pioneering work that dates back to Argonne emeritus scientist Paul Benioff’s groundbreaking theoretical proposal for a quantum computer in the 1980s. Today, research continues through Argonne’s QIS research and its leadership of Q-NEXT, a DOE National Quantum Information Science Research Center. Here are three ways Argonne research has been pushing the frontiers of QIS.

 

 

Forging New Materials

In the quantum world, information can be conveyed via a single electron — the part of an atom that carries a negative electric charge — or a particle of light. The ability to store and manipulate such particles requires the development of materials that can be controlled at subatomic levels. Argonne scientists have assembled a material based on copper and carbon monoxide molecules to mimic graphene, a promising but difficult-to-make host for quantum data.

A record-breaking qubit was created using chips made from silicon carbide, an inexpensive and commonly used material. Credit: David Awschalom/University of Chicago.

This novel quantum test bed confirmed predictions about the behavior of electrons in graphene.

“It’s incredibly rare for an experimental system to match theoretical predictions so perfectly,” said Dan Trainer, who worked on the project while he was a postdoctoral appointee at Argonne.

To both assemble and study the material, Trainer and colleagues used a scanning tunneling microscope at Argonne’s Center for Nanoscale Materials, a DOE Office of Science user facility.

Researchers also have made important strides with other materials that could be used for quantum applications. A team at Argonne and the University of Chicago created a record-breaking qubit — the quantum version of a computer bit — from the accessible and inexpensive compound silicon carbide. Qubits can be difficult to read efficiently, and their signals are notoriously fleeting, lasting on the order of milliseconds. The qubit was able to be read on demand, and its quantum state stayed intact for over five seconds.

In another study, Argonne researchers demonstrated the use of pure diamond membranes as platforms for storing and processing quantum information. DOE’s Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) awards are funding further research on a method to commercially produce this quantum diamond material. The diamond concept is part of broader research aimed at exploiting defects in crystals for quantum systems. Diamond membranes belong to a group of materials, solid-state spin qubits, that was featured on the cover of a special issue of the journal Nature Reviews Materials.

Running Powerful Simulations

Attendees at a quantum networks and communication workshop discuss the latest research during a poster session. Credit: Megan Rouse/Chicago Quantum Exchange.

Quantum computers and related technologies rely on a fundamental understanding of how atoms and their constituents behave, and how they might be tuned to represent data in a quantum system. Computer simulations can reveal the dynamics of quantum objects in ways no experiment could match. In one study, researchers showed how missing atoms known as vacancies in crystalline materials could be transformed into quantum information.

“By performing computer simulations at the atomic scale with high-performance computers, we can watch defects forming, moving, disappearing and rotating in a sample over time at different temperatures,” said Elizabeth Lee, a postdoctoral researcher in the UChicago Pritzker School of Molecular Engineering who worked on the project. ​“This is something that cannot be done experimentally, at present.”

In another study, Argonne researchers used quantum computers to simulate quantum materials. The study tackled the problem of ​“noisy” calculations on quantum computers, a problem where interference from the hardware causes the computer to return slightly different results for the same operation. By simulating different states of qubits in a quantum computing system, the researchers arrived at a proposed method for improving its accuracy on calculations.

Both of these studies drew, in part, on resources provided by the Argonne Leadership Computing Facility, a DOE Office of Science user facility.

Leadership in the Quantum Science Community

Argonne convenes some of the world’s foremost experts in QIS. By partnering on activities as varied as workshops, movie screenings and undergraduate fellowships, the lab is fostering crucial conversations and collaborations in this burgeoning field.

Partnerships are key: Q-NEXT has drawn more than 20 from industry and academia, most recently Amazon Web Services, the Massachusetts Institute of Technology and JPMorgan Chase.

A recent report from Q-NEXT, ​“A Roadmap for Quantum Interconnects,” laid out the necessary work ahead to develop the technologies for distributing quantum information between systems and across distances to enable quantum computing, communications and sensing.

“Quantum information research has been mostly about the science until recently,” said Supratik Guha, Q-NEXT chief technology officer, discussing the roadmap. ​“Now, especially over the past decade, there’s been increased interest in turning the science into technology.”

Argonne will soon officially open the  Argonne Quantum Foundry, a national resource for creating and delivering high-quality materials for quantum devices. It is one of two national foundries that will support Q-NEXT research. The opening of a second foundry at DOE’s SLAC National Accelerator Laboratory is imminent.

“The foundries will have a positive impact not just for research, but also for the quantum ecosystem, providing a robust supply chain of materials from which industry and other U.S. stakeholders will benefit,” said Q-NEXT Director David Awschalom, who is also an Argonne senior scientist, the Liew Family Professor of Molecular Engineering and vice dean for research and infrastructure at the University of Chicago Pritzker School of Molecular Engineering, and the director of the Chicago Quantum Exchange. ​“We expect that, as a unique facility in the Midwest, the Argonne Quantum Foundry will accelerate progress in quantum information science both for the region and the nation.”

About Q-NEXT

Q-NEXT is a U.S. Department of Energy National Quantum Information Science Research Center led by Argonne National Laboratory. Q-NEXT brings together world-class researchers from national laboratories, universities and U.S. technology companies with the goal of developing the science and technology to control and distribute quantum information. Q-NEXT collaborators and institutions will create two national foundries for quantum materials and devices, develop networks of sensors and secure communications systems, establish simulation and network test beds, and train the next-generation quantum-ready workforce to ensure continued U.S. scientific and economic leadership in this rapidly advancing field.

About Argonne Lab

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.


Source: Christina Nunez, Argonne Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire