HP-CONCORD Paves the Way for Scalable Machine Learning in HPC

October 4, 2018

Oct. 4, 2018 — Some of the most challenging problems in data-driven science involve understanding the interactions between thousands or even millions of variables: how a disease may be caused by a subset of the 20 thousands of human genes, or agricultural production improved by a combination of microbial species among millions in the environment. The problem is to discover the most significant relationships between all of these variables (genes that actively work together), while separating the accidental relationships (genes that occasionally appear together) or confounding effects (two genes that only interact through a common third gene).

A human brain parcellation derived from HP-CONCORD’s results using a graph clustering algorithm applied to a set of data from the Human Connectome Project.

A powerful machine learning algorithm called CONCORD can identify these relationships, but until recently could only be applied to modest-sized data sets. Researchers from Lawrence Berkeley National Laboratory (Berkeley Lab) and their collaborators have changed that, unleashing the full power of the Department of Energy’s supercomputers on these problems through a high-performance computing version of the algorithm called HP-CONCORD. Using supercomputers at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC), they demonstrated this parallel algorithm on an enormous set of data from the Human Connectome Project, which computed estimates for about 4 billion parameters, and an even larger demonstration problem with over 800 billion parameters. A paper introducing HP-CONCORD was presented at the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) conference in April 2018.

CONCORD was developed by Sang-Yun Oh, assistant professor in the Department of Statistics and Applied Probability at the University of California, Santa Barbara, as part of his dissertation work at Stanford. Oh was a postdoc at Berkeley Lab when then-graduate student researcher, Penporn Koanantakool, began work on HP-CONCORD as part of her own dissertation at UC Berkeley. CONCORD is an example of a graphical model estimator, a class of machine learning methods that are easier to explain and interpret than some of the competing methods that act more like black boxes. In order to use very large data sets, Koanantakool brought in her perspective on how to make parallel algorithms run across thousands of computational nodes by reducing the amount of communication.

Parallel Scaling via Communication Avoidance

“The most expensive thing you do on any computer is move data around, so you want to minimize data movement between a processor and its own memory and between multiple processors on a parallel machine,” said Kathy Yelick, Associate Lab Director for Computing Sciences at Berkeley Lab and Koanantakool’s thesis advisor. “Reducing data movement tends to save both time and energy.”

Koanantakool, who now works at Google Brain, developed HP-CONCORD and the underlying communication-avoiding algorithms for parallelizing some of the most challenging “all-to-all” style computations.

“When computing the forces between all pairs of particles, or multiplying two matrices, there is a pattern of taking all combinations of things, which involves a lot of communication on a parallel machine,” she explained. Within HP-CONCORD she looks at the problem of multiplying a huge sparse matrix (mostly zeros) with a smaller dense one, which has the added complexity of dividing the nonzeros and computational work evenly across the processors. Her work, which includes extensive experiments on NERSC supercomputers, demonstrates that with HP-CONCORD, the communication is minimal. Her algorithm proved to be more 100 times faster than the standard approach when running on 1,536 cores.

Applications in Data-driven Scientific Discovery

In their 2018 AISTATS paper, the HP-CONCORD team used fMRI (functional magnetic resonance imaging) data to estimate the underlying conditional dependency structure of the brain and then use the resulting estimate to automatically identify functional regions of the brain.

“We constructed a huge brain functional connectivity graph with HP-CONCORD. Then, using this graph, we can draw a map of functional regions in the brain, which is something neuroscientists care about,” Aydin Buluç, a scientist at Berkeley Lab and a co-author on the paper. “The fMRI data we used was not big enough to push HP-CONCORD’s limits; however, the datasets will only get bigger.”

Many other science areas will benefit from HP-CONCORD, he emphasized, such as trying to figure out if a trait of a plant is correlated with factors like soil composition, the amount of sunlight it absorbs and its genetic makeup – “all different kinds of objects and variables,” said Buluç.

In statistical terms, HP-CONCORD estimates the most significant parameters in the inverse covariance matrix. Capturing these parameters results in a sparse estimate, which is shown to have good statistical properties when the number of data points is small relative to the number of features, as is most likely the case in many high dimensional datasets.

“Inverse covariance estimates have many practical uses, including reconstructing gene regulatory networks in biology, capturing volatility structure in finance, estimating temperature-to-environmental-proxy relationship in environmental sciences. HP-CONCORD solutions can be used for hypothesis generation in exploratory data analysis to guide further experimental study,” said Oh. “Also, HP-CONCORD estimates can be used as plug-in estimates when relative magnitudes of associations are needed for some downstream analysis.”

Other co-authors of the paper include Alnur Ali at Carnegie Mellon University and Ariful Azad, Dmitriy Morozov and Leonid Oliker from the Computational Research Division at Berkeley Lab.

NERSC is a DOE Office of Science User Facility.

Availability of HP-CONCORD Software

HP-CONCORD and the underlying sparse-dense matrix routines are publicly available on Bitbucket. These are also provided as a ready-to-use software module on NERSC systems. For more details, see the instructions on the Bitbucket page.


Source: Berkeley Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire