HPC Supports Novel Calculation that Sheds Light on Matter/Anti-Matter Mystery

December 14, 2020

Dec. 14, 2020 — An international collaboration of theoretical physicists has published a novel calculation that provides new insights into the relationship between matter and antimatter in the universe.

The collaboration, known as RBC-UKQCD, includes scientists from Brookhaven National Laboratory, the RIKEN-BNL Research Center, CERN, Columbia University, the University of Connecticut, the University of Edinburgh, the Massachusetts Institute of Technology, the University of Regensburg, and the University of Southampton.

Their work, highlighted as an editor’s suggestion in a recent issue of the journal Physical Review D, included extensive use of supercomputing resources over six years at the National Energy Research Scientific Computing Center (NERSC), a U.S Department of Energy Office (DOE) of Science user facility located at Lawrence Berkeley National Laboratory.

A new calculation performed using some of the world’s fastest supercomputers allows scientists to more accurately predict the likelihood of two kaon decay pathways and compare those predictions with experimental measurements. The comparison tests for tiny differences between matter and antimatter that could, with even more computing power and other refinements, point to physics phenomena not explained by the Standard Model. Credit: Brookhaven National Laboratory

The new calculation gives a more accurate prediction of the likelihood with which subatomic particles known as kaons decay into a pair of electrically charged pions vs. a pair of neutral pions. Understanding these decays and comparing the prediction with the most recent state-of-the-art experimental measurements at CERN and the Fermi National Accelerator Laboratory gives scientists a way to test for tiny differences between matter and antimatter – known as a violation of CP symmetry – and search for effects that cannot be explained by the Standard Model, the prevailing theory of how basic building blocks of matter interact.

“At the level of precision achieved by this new calculation, we find good agreement between our prediction from the Standard Model and experiment,” explained Christopher Kelly of the Computational Science Institute at Brookhaven and a co-author on the Physical Review paper. “Thus, possible discrepancies between the Standard Model’s predictions and the results of experiment, if they exist, will require even more precise calculations for their discovery.”

Scientists’ current understanding is that the present universe was created with nearly equal amounts of matter and antimatter, “so the present imbalance of matter over anti-matter must result from subsequent physical processes which we should be able to determine,” added Norman Christ, professor of computational theoretical physics at Columbia University, a co-author on the Physical Review paper, and a NERSC PI on this research. “Finding a significant discrepancy between an experimental observation and predictions based on the Standard Model would potentially point the way to new mechanisms of particle interactions that could explain why we are made of matter instead of antimatter.”

Lattice QCD to the Rescue

To date, experiments that show a difference between matter and antimatter involve particles made of quarks and gluons, the subatomic building blocks for larger particles such as protons, neutrons, atomic nuclei, kaons, and pions. Standard Model-based calculations of how these particles behave must therefore include all possible interactions of quarks and gluons.

“Because of the huge number of variables involved, these are some of the most complicated calculations in all of physics,” said co-author Tianle Wang, of Columbia University.

To conquer the challenge, the team used a computing approach called lattice quantum chromodynamics (lattice QCD), a version of the modern theory of strong interactions that places the particles on a four-dimensional space-time lattice (three spatial dimensions plus time). This involved customizing a high-performance physics code dubbed “Grid” to enable the research team to use lattice QCD to treat the quarks in a very robust way, Christ explained.

“These are all specific application codes written for lattice QCD and are tailored for our collaboration’s method for the numerical treatment of quarks,” Christ said. “It is very accurate, and the calculations are very difficult.”

The calculations were run at multiple supercomputing centers, including NERSC, which handled the majority of the measurements and analysis; the Hokusai machine at the Advanced Center for Computing and Communication at Japan’s RIKEN Laboratory; the IBM BlueGene/Q installation at Brookhaven; the Mira supercomputer at the Argonne Leadership Computing Facility (ALCF); the DiRAC machine at the University of Edinburgh; and the National Center for Supercomputing Applications Blue Waters machine at the University of Illinois.

The first part of the work involved generating samples of snapshots of the most likely quark and gluon fields; the second and most complex step – extracting the actual kaon decay amplitudes – was performed on NERSC’s Cori supercomputer.

Ongoing NESAP Support

Being affiliated with the NERSC Exascale Science Application Program (NESAP) has been essential to laying the foundation for this research, Christ noted. He was the PI on one of the first NESAP teams, a joint lattice QCD project between the DOE’s High Energy and Nuclear Physics programs that examined both the two-pion decay of the kaon and the properties of QCD at extremely high temperatures.

“We began our NESAP work in 2014, and it is this initial project whose completion we are now reporting with the publication of the Physical Review article,” he said.

That first NESAP experience led to additional projects at NERSC, including that of the RBC-UKQCD collaboration. The team is now part of a new NESAP project that will focus on optimizing lattice QCD codes to take advantage of the incoming Perlmutter system’s high performance features, which will support the increasing data analysis and simulation demands of experimental and observational science.

Jack Deslippe, who leads NERSC’s NESAP program, said, “We’ve really enjoyed working with the QCD collaboration. They are always on the leading edge of scientific computing – excited and able to make use of new technologies. We learn a lot about the capabilities of new technologies working together, and the science output is world-leading.”

Looking ahead, Kelly emphasized, “In order to tighten our test of the Standard Model we must now overcome a number of more fundamental theoretical challenges. Our collaboration has already made significant strides in resolving these issues and, coupled with improvements in computational techniques and the power of near-future DOE supercomputers, we expect to achieve much improved results within the next three to five years.”

ALCF is a DOE Office of Science user facility.

This article utilizes materials provided by Brookhaven National Laboratory.

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is a U.S. Department of Energy Office of Science User Facility that serves as the primary high-performance computing center for scientific research sponsored by the Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 7,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a DOE national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. Department of Energy. Learn more about computing sciences at Berkeley Lab.


Source: Kathy Kincade, Berkeley Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Microsoft Closes Confidential Computing Loop with AMD’s Milan Chip

September 22, 2022

Microsoft shared details on how it uses an AMD technology to secure artificial intelligence as it builds out a secure AI infrastructure in its Azure cloud service. Microsoft has a strong relationship with Nvidia, but is also working with AMD's Epyc chips (including the new 3D VCache series), MI Instinct accelerators, and also... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as the first computer programmer. The company also announced tw Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing that Hopper-generation GPUs (which promise greater energy eff Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

AWS Solution Channel

Shutterstock 1194728515

Simulating 44-Qubit quantum circuits using AWS ParallelCluster

Dr. Fabio Baruffa, Sr. HPC & QC Solutions Architect
Dr. Pavel Lougovski, Pr. QC Research Scientist
Tyson Jones, Doctoral researcher, University of Oxford

Introduction

Currently, an enormous effort is underway to develop quantum computing hardware capable of scaling to hundreds, thousands, and even millions of physical (non-error-corrected) qubits. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing t Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Survey Results: PsiQuantum, ORNL, and D-Wave Tackle Benchmarking, Networking, and More

September 19, 2022

The are many issues in quantum computing today – among the more pressing are benchmarking, networking and development of hybrid classical-quantum approaches. Read more…

HPC + AI Wall Street to Feature ‘Spooky’ Science for Financial Services

September 18, 2022

Albert Einstein famously described quantum mechanics as "spooky action at a distance" due to the non-intuitive nature of superposition and quantum entangled par Read more…

Analog Chips Find a New Lease of Life in Artificial Intelligence

September 17, 2022

The need for speed is a hot topic among participants at this week’s AI Hardware Summit – larger AI language models, faster chips and more bandwidth for AI machines to make accurate predictions. But some hardware startups are taking a throwback approach for AI computing to counter the more-is-better... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Leading Solution Providers

Contributors

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire