HPC Unlocks Secret to Drought-Resistant Crops

April 20, 2017

This network shows the cross-species co-expression relationships between genes in Arabidopsis and Agave. Dark green nodes represent Agave genes, light green nodes represent Arabidopsis genes, blue edges represent positive co-expression relationships, and red edges represent negative co-expression relationships. The co-expression network was used in the paper to investigate the co-expression relationships of genes within the same gene family.

OAK RIDGE, Tenn., April 20, 2017 — A multi-institution research team has used supercomputing to understand processes leading to increased drought resistance in food and fuel crops.

Photosynthesis, the method plants use to convert energy from the sun into food, is a ubiquitous process many people learn about in elementary school. Almost all plants use photosynthesis to gather energy and stay alive.

Not all photosynthetic processes are the same, though. In recent years, researchers have grown increasingly interested in desert plants’ preferred method of photosynthesis—crassulacean acid metabolism (CAM), a process named after the Crassulaceae family of plants, which include succulents like friendship plants, pig’s ears, and hens and chicks.

These plants caught researchers’ attention because of their seemingly opposite photosynthetic schedule, and understanding this process may be the genetic key to helping plants of all kinds conserve water. With a more fundamental understanding of CAM, scientists aim to help the plants upon which society relies for food and fuel become more drought resistant, thereby expanding the area where crops can grow and thrive.

“One of the benefits of CAM photosynthesis is water efficiency,” said Oak Ridge National Laboratory (ORNL) computational biologist Dan Jacobson, who is part of a multi-institutional team that recently published a CAM study in Nature Plants. “When you think of bioenergy and food crops, you want them to be able to tolerate drought stress or grow in areas that aren’t currently arable land. That means they have to be able to withstand some kind of environmental stress, most commonly drought stress. CAM species are very good at this.”

To that end, Jacobson works with a large group of experimentalists and computational scientists to more fully understand the CAM process. This cross-omics team (combining expertise in metabolomics, proteomics, and genomics) uses computing resources at the Oak Ridge Leadership Computing Facility (OLCF)—a US Department of Energy Office of Science User Facility located at ORNL—to catalog how plants’ CAM processes vary and ultimately uncover how CAM processes may be genetically engineered into feed stock, food crops, and crops for bioenergy applications.

Shining a light on photosynthesis

When most people think of photosynthesis, they are actually thinking of a specific form, called C3 photosynthesis. This process follows the Calvin Cycle, in which plants capture light energy during the day and convert it into energy-bearing adenosine triphosphate (ATP).

ATP helps plants split water atoms into their hydrogen and oxygen constituent particles. Meanwhile, a C3 photosynthetic plant opens up small pores—called stomata—to absorb carbon dioxide from the atmosphere. Then at night, the newly freed hydrogen particles combine with carbon dioxide absorbed during the day to create the carbohydrates plants use to live and grow.

CAM photosynthesis works the same way, but stomata open for respiration at night and stay tightly closed during the day, allowing plants to conserve more water. This helps plants like cactus and Agave survive in climates where water is scarce.

Less than 10 percent of known plant species use this specialized form of photosynthesis, but researchers hope that by understanding how CAM works, they can apply this water-saving method to other plants. To do that, though, researchers need to understand how molecules interact during CAM photosynthesis and how metabolites and proteins change over time.

Data-intensive design

In addition to simulating processes too dangerous or complex for experiments, supercomputers also help scientists make connections in vast amounts of data. For this project, researchers from ORNL, the University of Tennessee, Newcastle University in the United Kingdom, and the University of Nevada, Reno gathered photosynthesis data from Agave (a CAM plant) and compared it with the Arabidopsis genus of plants (C3 plants). To conduct a study between Agave and a C3 plant, the team selected the Arabidopsis genus plant thale cress, one of the first plants to have its genome sequenced and a good candidate for plant studies.

The team then studied what gene expressions control stomata opening and closing in both CAM and C3 plants and how proteins regulated this process. Collecting this data in both a common CAM and a C3 species allowed the team to distinguish traits ubiquitous to CAM plants from species-specific traits. However, finding these connections required a machine capable of comparing large data sets against themselves.

Jacobson and his collaborators used the OLCF’s Eos analysis cluster to run “all-versus-all” comparisons of the team’s data sets. These comparisons scan large data sets and compare each individual plant’s data with all others. This helps the team form relationships between the metabolic processes underpinning CAM in individual Agave specimens as well as the differences between Agave’s CAM properties from thale cress’s C3 properties.

“These all-against-all vector comparisons for correlation networks allowed us to look for different types of patterns and different times of day where the [gene expression] transcripts are correlated with each other, where they were correlated to proteins or metabolites, or times of the day where they shift dramatically,” Jacobson said.

The team members gained access to OLCF resources through the OLCF’s Director’s Discretionary program, and after familiarizing themselves with Titan’s hybrid architecture, they plan to expand research into other CAM species, comparing larger data sets and more fully cataloging CAM processes. “As we gain more knowledge from these various approaches, we hope to tease apart the underlying mechanisms for CAM and how it is regulated,” Jacobson said. “That starts to build toward having enough knowledge to deploy CAM in a new species.”

Jacobson also indicated that without access to high-performance computing, the team would not have been able to find these meaningful connections in a timely manner. “This is the first study looking at a cross-omics, time-course experiment to try and explore CAM at this molecular detail,” he said. “I think the ability to use supercomputing infrastructure enabled things that wouldn’t have been possible otherwise. We were able to have a pretty big impact on the analysis of this work because of those resources.”

Related Publication: P. Abraham, H. Yin, A. Borland, D. Weighill, et al., “Transcript, Protein, and Metabolite Temporal Dynamics in the CAM Plant Agave.” Nature Plants 12, no. 2 (2016): 1–10, doi:10.1038/nplants.2016.178.

About Oak Ridge National Laboratory

Oak Ridge National Laboratory is supported by the US Department of Energy’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a variety of observatories and astronomers – but when COVID Read more…

By Oliver Peckham

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with the enterprise strengths of its recent acquisitions, notably Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Preparing for Exascale Science on Day 1

October 14, 2020

Science simulation, visualization, data, and learning applications will greatly benefit from the massive computational resources available with future exascal Read more…

By Linda Barney

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This