HPC Unlocks Secret to Drought-Resistant Crops

April 20, 2017

This network shows the cross-species co-expression relationships between genes in Arabidopsis and Agave. Dark green nodes represent Agave genes, light green nodes represent Arabidopsis genes, blue edges represent positive co-expression relationships, and red edges represent negative co-expression relationships. The co-expression network was used in the paper to investigate the co-expression relationships of genes within the same gene family.

OAK RIDGE, Tenn., April 20, 2017 — A multi-institution research team has used supercomputing to understand processes leading to increased drought resistance in food and fuel crops.

Photosynthesis, the method plants use to convert energy from the sun into food, is a ubiquitous process many people learn about in elementary school. Almost all plants use photosynthesis to gather energy and stay alive.

Not all photosynthetic processes are the same, though. In recent years, researchers have grown increasingly interested in desert plants’ preferred method of photosynthesis—crassulacean acid metabolism (CAM), a process named after the Crassulaceae family of plants, which include succulents like friendship plants, pig’s ears, and hens and chicks.

These plants caught researchers’ attention because of their seemingly opposite photosynthetic schedule, and understanding this process may be the genetic key to helping plants of all kinds conserve water. With a more fundamental understanding of CAM, scientists aim to help the plants upon which society relies for food and fuel become more drought resistant, thereby expanding the area where crops can grow and thrive.

“One of the benefits of CAM photosynthesis is water efficiency,” said Oak Ridge National Laboratory (ORNL) computational biologist Dan Jacobson, who is part of a multi-institutional team that recently published a CAM study in Nature Plants. “When you think of bioenergy and food crops, you want them to be able to tolerate drought stress or grow in areas that aren’t currently arable land. That means they have to be able to withstand some kind of environmental stress, most commonly drought stress. CAM species are very good at this.”

To that end, Jacobson works with a large group of experimentalists and computational scientists to more fully understand the CAM process. This cross-omics team (combining expertise in metabolomics, proteomics, and genomics) uses computing resources at the Oak Ridge Leadership Computing Facility (OLCF)—a US Department of Energy Office of Science User Facility located at ORNL—to catalog how plants’ CAM processes vary and ultimately uncover how CAM processes may be genetically engineered into feed stock, food crops, and crops for bioenergy applications.

Shining a light on photosynthesis

When most people think of photosynthesis, they are actually thinking of a specific form, called C3 photosynthesis. This process follows the Calvin Cycle, in which plants capture light energy during the day and convert it into energy-bearing adenosine triphosphate (ATP).

ATP helps plants split water atoms into their hydrogen and oxygen constituent particles. Meanwhile, a C3 photosynthetic plant opens up small pores—called stomata—to absorb carbon dioxide from the atmosphere. Then at night, the newly freed hydrogen particles combine with carbon dioxide absorbed during the day to create the carbohydrates plants use to live and grow.

CAM photosynthesis works the same way, but stomata open for respiration at night and stay tightly closed during the day, allowing plants to conserve more water. This helps plants like cactus and Agave survive in climates where water is scarce.

Less than 10 percent of known plant species use this specialized form of photosynthesis, but researchers hope that by understanding how CAM works, they can apply this water-saving method to other plants. To do that, though, researchers need to understand how molecules interact during CAM photosynthesis and how metabolites and proteins change over time.

Data-intensive design

In addition to simulating processes too dangerous or complex for experiments, supercomputers also help scientists make connections in vast amounts of data. For this project, researchers from ORNL, the University of Tennessee, Newcastle University in the United Kingdom, and the University of Nevada, Reno gathered photosynthesis data from Agave (a CAM plant) and compared it with the Arabidopsis genus of plants (C3 plants). To conduct a study between Agave and a C3 plant, the team selected the Arabidopsis genus plant thale cress, one of the first plants to have its genome sequenced and a good candidate for plant studies.

The team then studied what gene expressions control stomata opening and closing in both CAM and C3 plants and how proteins regulated this process. Collecting this data in both a common CAM and a C3 species allowed the team to distinguish traits ubiquitous to CAM plants from species-specific traits. However, finding these connections required a machine capable of comparing large data sets against themselves.

Jacobson and his collaborators used the OLCF’s Eos analysis cluster to run “all-versus-all” comparisons of the team’s data sets. These comparisons scan large data sets and compare each individual plant’s data with all others. This helps the team form relationships between the metabolic processes underpinning CAM in individual Agave specimens as well as the differences between Agave’s CAM properties from thale cress’s C3 properties.

“These all-against-all vector comparisons for correlation networks allowed us to look for different types of patterns and different times of day where the [gene expression] transcripts are correlated with each other, where they were correlated to proteins or metabolites, or times of the day where they shift dramatically,” Jacobson said.

The team members gained access to OLCF resources through the OLCF’s Director’s Discretionary program, and after familiarizing themselves with Titan’s hybrid architecture, they plan to expand research into other CAM species, comparing larger data sets and more fully cataloging CAM processes. “As we gain more knowledge from these various approaches, we hope to tease apart the underlying mechanisms for CAM and how it is regulated,” Jacobson said. “That starts to build toward having enough knowledge to deploy CAM in a new species.”

Jacobson also indicated that without access to high-performance computing, the team would not have been able to find these meaningful connections in a timely manner. “This is the first study looking at a cross-omics, time-course experiment to try and explore CAM at this molecular detail,” he said. “I think the ability to use supercomputing infrastructure enabled things that wouldn’t have been possible otherwise. We were able to have a pretty big impact on the analysis of this work because of those resources.”

Related Publication: P. Abraham, H. Yin, A. Borland, D. Weighill, et al., “Transcript, Protein, and Metabolite Temporal Dynamics in the CAM Plant Agave.” Nature Plants 12, no. 2 (2016): 1–10, doi:10.1038/nplants.2016.178.

About Oak Ridge National Laboratory

Oak Ridge National Laboratory is supported by the US Department of Energy’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Reportedly Backing Away from Its Proposed $40B Arm Acquisition

January 27, 2022

For GPU-maker Nvidia, it was not supposed to end this way, with the company giving up on its grandiose plans to acquire chip IP vendor, Arm Ltd. But after more than 18 months of prying eyes from government agencies fr Read more…

White House Scientific Integrity Report Addresses AI and ML Ethics

January 26, 2022

Earlier this month, the White House Office of Science and Technology Policy (OSTP) Scientific Integrity Task Force released a report titled “Protecting the Integrity of Government Science.” While broad-based and over Read more…

IBM Quantum Debuts Classical Entanglement Forging to Expand Simulation Capabilities

January 26, 2022

IBM last week reported a new technique – entanglement forging – that uses both quantum and classical computing resources to double the size of select simulation problems that can be solved on current quantum computer Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of all sizes. The new HPC-as-a-Service is part of the TruScale Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new ThreadArch multi-thread processor technology that is intended to h Read more…

AWS Solution Channel

Register for the AWS “Speeds n’ Feeds” event on Feb. 9th

Since the debut of the first ‘Beowulf’ cluster in 1994, HPC has been a race between technologists squeezing as much performance as possible from hardware, and scale economics driving mass-production prices to affordable levels. Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have dominated the conversation. Microsoft’s proposed topologic Read more…

Nvidia Reportedly Backing Away from Its Proposed $40B Arm Acquisition

January 27, 2022

For GPU-maker Nvidia, it was not supposed to end this way, with the company giving up on its grandiose plans to acquire chip IP vendor, Arm Ltd. But after mo Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new Thread Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

IBM Watson Health Finally Sold by IBM After 11 Months of Rumors

January 21, 2022

IBM has sold its underachieving IBM Watson Health unit for an undisclosed price tag to a global investment firm after almost a year’s worth of rumors that sai Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire