HPC Unlocks Secret to Drought-Resistant Crops

April 20, 2017

This network shows the cross-species co-expression relationships between genes in Arabidopsis and Agave. Dark green nodes represent Agave genes, light green nodes represent Arabidopsis genes, blue edges represent positive co-expression relationships, and red edges represent negative co-expression relationships. The co-expression network was used in the paper to investigate the co-expression relationships of genes within the same gene family.

OAK RIDGE, Tenn., April 20, 2017 — A multi-institution research team has used supercomputing to understand processes leading to increased drought resistance in food and fuel crops.

Photosynthesis, the method plants use to convert energy from the sun into food, is a ubiquitous process many people learn about in elementary school. Almost all plants use photosynthesis to gather energy and stay alive.

Not all photosynthetic processes are the same, though. In recent years, researchers have grown increasingly interested in desert plants’ preferred method of photosynthesis—crassulacean acid metabolism (CAM), a process named after the Crassulaceae family of plants, which include succulents like friendship plants, pig’s ears, and hens and chicks.

These plants caught researchers’ attention because of their seemingly opposite photosynthetic schedule, and understanding this process may be the genetic key to helping plants of all kinds conserve water. With a more fundamental understanding of CAM, scientists aim to help the plants upon which society relies for food and fuel become more drought resistant, thereby expanding the area where crops can grow and thrive.

“One of the benefits of CAM photosynthesis is water efficiency,” said Oak Ridge National Laboratory (ORNL) computational biologist Dan Jacobson, who is part of a multi-institutional team that recently published a CAM study in Nature Plants. “When you think of bioenergy and food crops, you want them to be able to tolerate drought stress or grow in areas that aren’t currently arable land. That means they have to be able to withstand some kind of environmental stress, most commonly drought stress. CAM species are very good at this.”

To that end, Jacobson works with a large group of experimentalists and computational scientists to more fully understand the CAM process. This cross-omics team (combining expertise in metabolomics, proteomics, and genomics) uses computing resources at the Oak Ridge Leadership Computing Facility (OLCF)—a US Department of Energy Office of Science User Facility located at ORNL—to catalog how plants’ CAM processes vary and ultimately uncover how CAM processes may be genetically engineered into feed stock, food crops, and crops for bioenergy applications.

Shining a light on photosynthesis

When most people think of photosynthesis, they are actually thinking of a specific form, called C3 photosynthesis. This process follows the Calvin Cycle, in which plants capture light energy during the day and convert it into energy-bearing adenosine triphosphate (ATP).

ATP helps plants split water atoms into their hydrogen and oxygen constituent particles. Meanwhile, a C3 photosynthetic plant opens up small pores—called stomata—to absorb carbon dioxide from the atmosphere. Then at night, the newly freed hydrogen particles combine with carbon dioxide absorbed during the day to create the carbohydrates plants use to live and grow.

CAM photosynthesis works the same way, but stomata open for respiration at night and stay tightly closed during the day, allowing plants to conserve more water. This helps plants like cactus and Agave survive in climates where water is scarce.

Less than 10 percent of known plant species use this specialized form of photosynthesis, but researchers hope that by understanding how CAM works, they can apply this water-saving method to other plants. To do that, though, researchers need to understand how molecules interact during CAM photosynthesis and how metabolites and proteins change over time.

Data-intensive design

In addition to simulating processes too dangerous or complex for experiments, supercomputers also help scientists make connections in vast amounts of data. For this project, researchers from ORNL, the University of Tennessee, Newcastle University in the United Kingdom, and the University of Nevada, Reno gathered photosynthesis data from Agave (a CAM plant) and compared it with the Arabidopsis genus of plants (C3 plants). To conduct a study between Agave and a C3 plant, the team selected the Arabidopsis genus plant thale cress, one of the first plants to have its genome sequenced and a good candidate for plant studies.

The team then studied what gene expressions control stomata opening and closing in both CAM and C3 plants and how proteins regulated this process. Collecting this data in both a common CAM and a C3 species allowed the team to distinguish traits ubiquitous to CAM plants from species-specific traits. However, finding these connections required a machine capable of comparing large data sets against themselves.

Jacobson and his collaborators used the OLCF’s Eos analysis cluster to run “all-versus-all” comparisons of the team’s data sets. These comparisons scan large data sets and compare each individual plant’s data with all others. This helps the team form relationships between the metabolic processes underpinning CAM in individual Agave specimens as well as the differences between Agave’s CAM properties from thale cress’s C3 properties.

“These all-against-all vector comparisons for correlation networks allowed us to look for different types of patterns and different times of day where the [gene expression] transcripts are correlated with each other, where they were correlated to proteins or metabolites, or times of the day where they shift dramatically,” Jacobson said.

The team members gained access to OLCF resources through the OLCF’s Director’s Discretionary program, and after familiarizing themselves with Titan’s hybrid architecture, they plan to expand research into other CAM species, comparing larger data sets and more fully cataloging CAM processes. “As we gain more knowledge from these various approaches, we hope to tease apart the underlying mechanisms for CAM and how it is regulated,” Jacobson said. “That starts to build toward having enough knowledge to deploy CAM in a new species.”

Jacobson also indicated that without access to high-performance computing, the team would not have been able to find these meaningful connections in a timely manner. “This is the first study looking at a cross-omics, time-course experiment to try and explore CAM at this molecular detail,” he said. “I think the ability to use supercomputing infrastructure enabled things that wouldn’t have been possible otherwise. We were able to have a pretty big impact on the analysis of this work because of those resources.”

Related Publication: P. Abraham, H. Yin, A. Borland, D. Weighill, et al., “Transcript, Protein, and Metabolite Temporal Dynamics in the CAM Plant Agave.” Nature Plants 12, no. 2 (2016): 1–10, doi:10.1038/nplants.2016.178.

About Oak Ridge National Laboratory

Oak Ridge National Laboratory is supported by the US Department of Energy’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Turnaround Complete, HPE’s Whitman Departs

November 22, 2017

Having turned around the aircraft carrier the Silicon Valley icon had become, Meg Whitman is leaving the helm of a restructured Hewlett Packard. Her successor, technologist Antonio Neri will now guide what Whitman assert Read more…

By George Leopold

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This