HPE: Accelerating Vaccine Research for COVID-19 with High-Performance Computing and AI

April 30, 2020

In a blog posted below, Peter Ungaro, senior VP and general manager of the HPC and Mission Critical Solutions business unit at Hewlett Packard Enterprise, details how scientists around the world are working together to speed up the drug discovery process that will tackle the coronavirus with the use of technologies such as simulation, artificial intelligence, and high performance computing. Ungaro also dives into how HPE is playing a supporting role with company initiatives that include the use of the company’s HPC systems and experience.


Peter Ungaro. Image courtesy of Cray.

High-performance computing (HPC) is playing a leading role in our fight against COVID-19 to support the urgent need to find a vaccine that will save lives and reduce suffering worldwide.

Scientists in labs around the globe rely on the massive computing power of HPC and supercomputers to run complex mathematical models, which transform vast volumes of evolving COVID-19 data into simulations of biological and chemical processes. These simulations advance our understanding of the new strain of virus and the complex interactions of the human body down to the molecular level, to accelerate the development of new treatments and preventative measures.

By combining modeling and simulation capabilities with new techniques in artificial intelligence (AI) and machine learning, these simulations are now becoming even more accurate. That is why through our collaborations with worldwide leading research centers that are using our HPC and AI solutions, Hewlett Packard Enterprise and the HPC industry are supporting scientists tackling complex research that will unlock insights and bring us closer to drug discovery.

HPE is proud to play a leading role in supporting many of these initiatives with HPE HPC systems and expertise. For example, the U.S. Department of Energy’s Argonne National Laboratory (ANL) and Lawrence Livermore National Laboratory (LLNL), and France’s National Center for Scientific Research (CNRS) together with GENCI, the French national infrastructure for HPC resources and facilities, are using HPC and AI to speed up discovery of antibody and drug candidates that can be tested for new vaccine treatments.

Each of these research teams are separately applying AI and machine learning to modeling and simulation to increase accuracy and predictions – something we describe as the emerging convergence of modeling and simulation with AI and analytics. These efforts further accelerate discovery of new antibodies, which are blood proteins produced to fight toxins or other foreign substances that induce immune response, or potential drug candidates based on existing catalogs of data. Researchers are then able to test these for potential counter-measures to the virus that can be developed into drug therapies.

Argonne researchers apply AI-enabled modeling and simulation to significantly speed discovery of antiviral agents

At the U.S. Department of Energy’s (DOE) Argonne National Laboratory, researchers have taken on a mission to dramatically accelerate the pace in discovering antiviral agents to counterattack the new virus, reducing the potential timeframe from years to just couple of months.

Researchers are using the Theta supercomputer, powered by HPE, and housed at the Argonne Leadership Computing Facility, to apply artificial intelligence and machine learning to accelerate the process of simulating billions of different small molecules from a publicly available database of drug candidates. The goal is to improve predictions on how molecules in drug candidates interact with each other and bind to viral proteins. Successful binding means these drug candidates can be used for further testing for a vaccine treatment.

Arvind Ramanathan, a computational biologist in Argonne’s Data Science and Learning division with whom we work, characterized the opportunity this way: “When we’re looking at this virus, we should be aware that it’s not likely just a single protein we’re dealing with — we need to look at all the viral proteins as a whole. ​By using machine learning and artificial intelligence methods to screen for drugs across multiple target proteins in the virus, we may have a better pathway to an antiviral drug.”

LLNL uses a first-of-its-kind AI-driven modeling platform to design 20 initial antibody candidates among 1040 possibilities

We are incredibly proud to share that LLNL has already made significant progress narrowing down the number of potential antibody candidates from 1040 to an initial set of just 20!  That’s a dramatic process of elimination. On top of that, this inspiring breakthrough was achieved in just weeks, compared to a typical lead time of years using other approaches.

LLNL’s COVID-19 response team, which includes researchers from various disciplines with deep expertise in vaccine and countermeasure development, used LLNL’s Catalyst, an HPC cluster powered by HPE, to improve predictions and speed up this discovery process by using a first-of-its-kind modeling platform. The platform integrates important components to generate high-quality predictions, such as experimental data and structural biology data, with bioinformatics modeling, molecular simulations and machine learning algorithms.

“Our approach, while still being developed, is aimed at designing high quality antibody therapeutics or vaccines in extremely rapid time-scales for scenarios in which waiting for many rounds of time-consuming experimental steps is not an option. Experimental data and structural bioinformatics are important components to enable high-quality predictions, but integrating machine learning and molecular simulations on HPC are the key to enabling the speed and scalability we need to search and evaluate huge numbers of possible antibody designs,” said Dr. Daniel Faissol, data scientist at Lawrence Livermore National Laboratory.

CNRS and GENCI offer a faster approach to perform molecular dynamics simulations

Similarly, GENCI, together with CNRS, has extended its Jean Zay supercomputer, which is installed in IDRIS, one of CNRS’ data centers, to power converged modeling, simulation, AI and machine learning workloads, to a number of research centers also focused on increasing accuracy and outcomes of antibodies. GENCI’s Jean Zay was designed by HPE in direct response to President Emmanuel Macron’s significant AI initiative to propel France’s R&D in AI with a new supercomputer.

As with many other brilliant and diligent researchers responding to COVID-19, the team using GENCI’s Jean Zay, led by Pr. Jean Philip Piquemal at Sorbonne University in Paris, is taking a unique and innovative approach to deciphering and understanding the new strain of virus internal machinery to help increase discovery of new drugs. While still in an early research stage, Dr. Piquemal and his team are using the system to optimize the Tinker-HP software, a new approach to using parallel computing that is enabled by multiple GPUs and specifically designed to simulate at the level of atoms for large biological molecules. Using advanced molecular dynamics techniques captures many-body physics, and Tinker-HP helps scientists achieve this by simultaneously performing a number of data-intensive calculations to create 3D simulations of molecular interactions faster and at a higher resolution.

HPE is proud to be a force for good in even the most trying of times

Being a part of a global community that is making a deep, meaningful impact and helping to save lives – particularly in this time of global urgency – gives me tremendous pride.

At HPE, we are committed to advancing the way we live and work.  As a world leader in HPC and AI, we recognize the impact we can make by applying modeling, simulation, machine learning and analytics capabilities to data to accelerate insights and discoveries that were never before possible. By making these technologies available and setting new standards for speed, performance and scale, we hope to enable the broader HPC research community to make scientific breakthroughs related to the COVID-19 pandemic that will advance treatment and save lives.

We are extending our HPC efforts to address COVID-19 research on a greater, national scale by recently partnering with the White House as part of the COVID-19 High Performance Computing consortium. We are further helping to address other challenges with a number of initiatives that can be found in the HPE COVID-19 microsite and latest blog from Antonio Neri, HPE President and CEO.

Thank you all, and be sure to continue practicing social distancing and washing your hands!

About Hewlett Packard Enterprise

Hewlett Packard Enterprise is the global edge-to-cloud platform-as-a-service company that helps organizations accelerate outcomes by unlocking value from all of their data, everywhere. Built on decades of reimagining the future and innovating to advance the way people live and work, HPE delivers unique, open and intelligent technology solutions, with a consistent experience across all clouds and edges, to help customers develop new business models, engage in new ways, and increase operational performance.


Source:  Peter Ungaro, Hewlett Packard Enterprise

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire