HPE: Accelerating Vaccine Research for COVID-19 with High-Performance Computing and AI

April 30, 2020

In a blog posted below, Peter Ungaro, senior VP and general manager of the HPC and Mission Critical Solutions business unit at Hewlett Packard Enterprise, details how scientists around the world are working together to speed up the drug discovery process that will tackle the coronavirus with the use of technologies such as simulation, artificial intelligence, and high performance computing. Ungaro also dives into how HPE is playing a supporting role with company initiatives that include the use of the company’s HPC systems and experience.


Peter Ungaro. Image courtesy of Cray.

High-performance computing (HPC) is playing a leading role in our fight against COVID-19 to support the urgent need to find a vaccine that will save lives and reduce suffering worldwide.

Scientists in labs around the globe rely on the massive computing power of HPC and supercomputers to run complex mathematical models, which transform vast volumes of evolving COVID-19 data into simulations of biological and chemical processes. These simulations advance our understanding of the new strain of virus and the complex interactions of the human body down to the molecular level, to accelerate the development of new treatments and preventative measures.

By combining modeling and simulation capabilities with new techniques in artificial intelligence (AI) and machine learning, these simulations are now becoming even more accurate. That is why through our collaborations with worldwide leading research centers that are using our HPC and AI solutions, Hewlett Packard Enterprise and the HPC industry are supporting scientists tackling complex research that will unlock insights and bring us closer to drug discovery.

HPE is proud to play a leading role in supporting many of these initiatives with HPE HPC systems and expertise. For example, the U.S. Department of Energy’s Argonne National Laboratory (ANL) and Lawrence Livermore National Laboratory (LLNL), and France’s National Center for Scientific Research (CNRS) together with GENCI, the French national infrastructure for HPC resources and facilities, are using HPC and AI to speed up discovery of antibody and drug candidates that can be tested for new vaccine treatments.

Each of these research teams are separately applying AI and machine learning to modeling and simulation to increase accuracy and predictions – something we describe as the emerging convergence of modeling and simulation with AI and analytics. These efforts further accelerate discovery of new antibodies, which are blood proteins produced to fight toxins or other foreign substances that induce immune response, or potential drug candidates based on existing catalogs of data. Researchers are then able to test these for potential counter-measures to the virus that can be developed into drug therapies.

Argonne researchers apply AI-enabled modeling and simulation to significantly speed discovery of antiviral agents

At the U.S. Department of Energy’s (DOE) Argonne National Laboratory, researchers have taken on a mission to dramatically accelerate the pace in discovering antiviral agents to counterattack the new virus, reducing the potential timeframe from years to just couple of months.

Researchers are using the Theta supercomputer, powered by HPE, and housed at the Argonne Leadership Computing Facility, to apply artificial intelligence and machine learning to accelerate the process of simulating billions of different small molecules from a publicly available database of drug candidates. The goal is to improve predictions on how molecules in drug candidates interact with each other and bind to viral proteins. Successful binding means these drug candidates can be used for further testing for a vaccine treatment.

Arvind Ramanathan, a computational biologist in Argonne’s Data Science and Learning division with whom we work, characterized the opportunity this way: “When we’re looking at this virus, we should be aware that it’s not likely just a single protein we’re dealing with — we need to look at all the viral proteins as a whole. ​By using machine learning and artificial intelligence methods to screen for drugs across multiple target proteins in the virus, we may have a better pathway to an antiviral drug.”

LLNL uses a first-of-its-kind AI-driven modeling platform to design 20 initial antibody candidates among 1040 possibilities

We are incredibly proud to share that LLNL has already made significant progress narrowing down the number of potential antibody candidates from 1040 to an initial set of just 20!  That’s a dramatic process of elimination. On top of that, this inspiring breakthrough was achieved in just weeks, compared to a typical lead time of years using other approaches.

LLNL’s COVID-19 response team, which includes researchers from various disciplines with deep expertise in vaccine and countermeasure development, used LLNL’s Catalyst, an HPC cluster powered by HPE, to improve predictions and speed up this discovery process by using a first-of-its-kind modeling platform. The platform integrates important components to generate high-quality predictions, such as experimental data and structural biology data, with bioinformatics modeling, molecular simulations and machine learning algorithms.

“Our approach, while still being developed, is aimed at designing high quality antibody therapeutics or vaccines in extremely rapid time-scales for scenarios in which waiting for many rounds of time-consuming experimental steps is not an option. Experimental data and structural bioinformatics are important components to enable high-quality predictions, but integrating machine learning and molecular simulations on HPC are the key to enabling the speed and scalability we need to search and evaluate huge numbers of possible antibody designs,” said Dr. Daniel Faissol, data scientist at Lawrence Livermore National Laboratory.

CNRS and GENCI offer a faster approach to perform molecular dynamics simulations

Similarly, GENCI, together with CNRS, has extended its Jean Zay supercomputer, which is installed in IDRIS, one of CNRS’ data centers, to power converged modeling, simulation, AI and machine learning workloads, to a number of research centers also focused on increasing accuracy and outcomes of antibodies. GENCI’s Jean Zay was designed by HPE in direct response to President Emmanuel Macron’s significant AI initiative to propel France’s R&D in AI with a new supercomputer.

As with many other brilliant and diligent researchers responding to COVID-19, the team using GENCI’s Jean Zay, led by Pr. Jean Philip Piquemal at Sorbonne University in Paris, is taking a unique and innovative approach to deciphering and understanding the new strain of virus internal machinery to help increase discovery of new drugs. While still in an early research stage, Dr. Piquemal and his team are using the system to optimize the Tinker-HP software, a new approach to using parallel computing that is enabled by multiple GPUs and specifically designed to simulate at the level of atoms for large biological molecules. Using advanced molecular dynamics techniques captures many-body physics, and Tinker-HP helps scientists achieve this by simultaneously performing a number of data-intensive calculations to create 3D simulations of molecular interactions faster and at a higher resolution.

HPE is proud to be a force for good in even the most trying of times

Being a part of a global community that is making a deep, meaningful impact and helping to save lives – particularly in this time of global urgency – gives me tremendous pride.

At HPE, we are committed to advancing the way we live and work.  As a world leader in HPC and AI, we recognize the impact we can make by applying modeling, simulation, machine learning and analytics capabilities to data to accelerate insights and discoveries that were never before possible. By making these technologies available and setting new standards for speed, performance and scale, we hope to enable the broader HPC research community to make scientific breakthroughs related to the COVID-19 pandemic that will advance treatment and save lives.

We are extending our HPC efforts to address COVID-19 research on a greater, national scale by recently partnering with the White House as part of the COVID-19 High Performance Computing consortium. We are further helping to address other challenges with a number of initiatives that can be found in the HPE COVID-19 microsite and latest blog from Antonio Neri, HPE President and CEO.

Thank you all, and be sure to continue practicing social distancing and washing your hands!

About Hewlett Packard Enterprise

Hewlett Packard Enterprise is the global edge-to-cloud platform-as-a-service company that helps organizations accelerate outcomes by unlocking value from all of their data, everywhere. Built on decades of reimagining the future and innovating to advance the way people live and work, HPE delivers unique, open and intelligent technology solutions, with a consistent experience across all clouds and edges, to help customers develop new business models, engage in new ways, and increase operational performance.


Source:  Peter Ungaro, Hewlett Packard Enterprise

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire