HPE Unveils Supercomputing Research for Achieving Quantum Advantage

January 27, 2022

In new research published in Science Advances, HPE improves prediction that it will take 600 million years to simulate a quantum problem on a supercomputer by dramatically reducing the time with new prediction of 73 days

HOUSTON, Jan. 27, 2022 — Hewlett Packard Enterprise has announced new research that demonstrates how supercomputers can be used to test and benchmark computational performance for the quantum computing community, redefining theoretical performance claims that future quantum computers will deliver.  The research results reveal how a problem, called Gaussian Boson Sampling (GBS), which is considered to be a domain of quantum computing, was achieved using high performance computing (HPC), or supercomputing, expanding the boundary of problems that supercomputers can address.

In the new research, team members with HPE’s HPC and AI Business Group and Hewlett Packard Labs, HPE’s R&D arm, collaborated with the University of Bristol and Imperial College London to improve a previous prediction that it would take 600 million years to simulate a Gaussian Boson Sampling problem of the same size as an experimental quantum computer, on the world’s largest supercomputer. After developing an algorithm and applying it to a simulation of the GBS problem that ran on smaller, older generations of HPE-built supercomputers, the teams used the simulation results to predict it would take just 73 days on an even faster supercomputer1. The novel algorithm represents a billion-fold speed-up compared to previous approaches for classical computers.

“Today’s research, a result of a strong collaboration between teams at HPE, University of Bristol and Imperial College London, was inspired by the leading edge of quantum computing development to extend the value that supercomputing delivers, when combined with optimized algorithms, to accurately compare computational advantage between classical computers and quantum computers, and set new standards of performance,” said Justin Hotard, senior vice president and general manager, HPC and AI at HPE. “We look forward to furthering this effort by partnering with the quantum computing community and integrating the HPE Cray supercomputer product line with other enabling technologies to advance the journey to developing future quantum computers.”

New research reveals the expanded boundary of computational advantage with supercomputing

The latest experiment showcases the increasing value of supercomputing and how it can be used to test and support current or near-term quantum experiments that help to accelerate the commercial relevance of quantum computers.2 The research also predicts that as supercomputing continues to advance, such as with upcoming exascale supercomputers that are up to 10 times faster than some of today’s most powerful supercomputers, quantum computing results can be verified in even shorter windows of time, from months to weeks on faster systems.

HPE’s latest research outcome is a powerful example of the sustained value of HPC and the potential for novel algorithms in classical and quantum computing. HPE and teams were inspired by claims made in a previous paper, the Quantum Computational Advantage Using Photons, from the University of Science and Technology of China (USTC). In the paper, USTC’s researchers share findings from an experiment involving a large, complex quantum state of light that was measured using single photon detectors in a protocol called “Gaussian Boson Sampling” (GBS). USTC predicted that their simulation of GBS, which they performed on a single-purpose photonic quantum computer, in 200 seconds, would take 600 million years to simulate on the world’s largest supercomputer.

Researchers with HPE, the University of Bristol and Imperial College London, applied an algorithm that calculated exact, correlated photon detection probabilities for GBS simulations. The researchers first ran the simulations on GW4’s Isambard supercomputer and an HPE supercomputer that HPE internally uses as a test system. The simulations on these systems were then used to predict that it would take an estimated 73 days to run on today’s fastest supercomputer, and an estimated three weeks on an exascale supercomputer. The experiment and results were published in today’s paper, The Boundary of Quantum Advantage in Gaussian Boson Sampling.

HPE contributes to the quantum computing community with HPC benchmarks and milestones

To help benchmark computational advantage and identify when and where future quantum computers will unlock value, HPE is continuously exploring ways to optimize high performance computing systems, or supercomputers to validate increasingly demanding experiments and speed time-to-insight. By using heterogeneous architectures across CPUs, GPUs, FPGAs and other types of accelerators, in addition to integrating purpose-built software and networking capabilities, HPE is continuing to advance HPC that is the most powerful solution today to solve the world’s most challenging problems such as in cancer diagnostics and treatment, drug design, renewable energy, sustainability, and harnessing the power of quantum mechanics for computation.

To learn more about HPE’s robust portfolio of HPC solutions and how it is used across various industries, in support of a range of workloads, please visit: https://www.hpe.com/us/en/compute/hpc

About Hewlett Packard Enterprise

Hewlett Packard Enterprise (NYSE: HPE) is the global edge-to-cloud company that helps organizations accelerate outcomes by unlocking value from all of their data, everywhere. Built on decades of reimagining the future and innovating to advance the way people live and work, HPE delivers unique, open and intelligent technology solutions as a service.  With offerings spanning Cloud Services, Compute, High Performance Computing & AI, Intelligent Edge, Software, and Storage, HPE provides a consistent experience across all clouds and edges, helping customers develop new business models, engage in new ways, and increase operational performance. For more information, visit: www.hpe.com.

Notes

1 Prediction of 73 hours to solve a Gaussian Boson Sampling simulation was estimated for the Fugaku supercomputer

2 Near-term quantum experiments are based on today’s available quantum computers which use noisy intermediate-scale quantum (NISQ) devices. NISQ devices are the leading quantum processors that contain or will contain nearly 50 to a few hundred qubits, but it is an open research question whether they will be advanced enough to outperform today’s most powerful supercomputers on enterprise-relevant workloads.”


Source: HPE

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

LRZ Adds Mega AI Aystem as It Stacks up on Future Computing Systems

May 25, 2022

The battle among high-performance computing hubs to stack up on cutting-edge computers for quicker time to science is getting steamy as new chip technologies become mainstream. A European supercomputing hub near Munich, called the Leibniz Supercomputing Centre, is deploying Cerebras Systems' CS-2 AI system as part of an internal initiative called Future Computing to assess alternative computing... Read more…

Nvidia Launches Four Arm-based Grace Server Designs

May 25, 2022

Nvidia is lining up Arm-based server platforms for a diverse range of HPC, AI and cloud applications. The new systems employ Nvidia’s custom Grace Arm CPUs in four different configurations, including a Grace Hopper HGX Read more…

Nvidia Bakes Liquid Cooling into PCIe GPU Cards

May 24, 2022

Nvidia is bringing liquid cooling, which it typically puts alongside GPUs on the high-performance computing systems, to its mainstream server GPU portfolio. The company will start shipping its A100 PCIe Liquid Cooled GPU, which is based on the Ampere architecture, for servers later this year. The liquid-cooled GPU based on the company's new Hopper architecture for PCIe slots will ship early next year. Read more…

Durham University to Test Rockport Networks on COSMA7 Supercomputer

May 24, 2022

Durham University’s Institute for Computational Cosmology (ICC) is home to the COSMA series of supercomputers (short for “cosmological machine”). COSMA—now in its eighth iteration, COSMA8—has been working to an Read more…

SoftIron Measures Its Carbon Footprint to Make a Point

May 24, 2022

Since its founding in 2012, London-based software-defined storage provider SoftIron has been making its case for what it calls secure provenance: a term that encompasses the company’s rigorous accounting of the supply Read more…

AWS Solution Channel

Shutterstock 1044740602

DTN Doubles Weather Forecasting Performance Using Amazon EC2 Hpc6a Instances

Organizations in weather-sensitive industries need highly accurate and near-real-time weather intelligence to make adept business decisions. Many companies in these industries rely on information from DTN, a global data, analytics, and technology company, for that information. Read more…

TACC Adds Details to Vision for Leadership-Class Computing Facility

May 23, 2022

The Texas Advanced Computing Center (TACC) at The University of Texas at Austin passed to the next phase of the planning process for the Leadership-Class Computing Facility (LCCF), a process that has many approval stage Read more…

LRZ Adds Mega AI Aystem as It Stacks up on Future Computing Systems

May 25, 2022

The battle among high-performance computing hubs to stack up on cutting-edge computers for quicker time to science is getting steamy as new chip technologies become mainstream. A European supercomputing hub near Munich, called the Leibniz Supercomputing Centre, is deploying Cerebras Systems' CS-2 AI system as part of an internal initiative called Future Computing to assess alternative computing... Read more…

Nvidia Launches Four Arm-based Grace Server Designs

May 25, 2022

Nvidia is lining up Arm-based server platforms for a diverse range of HPC, AI and cloud applications. The new systems employ Nvidia’s custom Grace Arm CPUs in Read more…

Nvidia Bakes Liquid Cooling into PCIe GPU Cards

May 24, 2022

Nvidia is bringing liquid cooling, which it typically puts alongside GPUs on the high-performance computing systems, to its mainstream server GPU portfolio. The company will start shipping its A100 PCIe Liquid Cooled GPU, which is based on the Ampere architecture, for servers later this year. The liquid-cooled GPU based on the company's new Hopper architecture for PCIe slots will ship early next year. Read more…

Durham University to Test Rockport Networks on COSMA7 Supercomputer

May 24, 2022

Durham University’s Institute for Computational Cosmology (ICC) is home to the COSMA series of supercomputers (short for “cosmological machine”). COSMA— Read more…

SoftIron Measures Its Carbon Footprint to Make a Point

May 24, 2022

Since its founding in 2012, London-based software-defined storage provider SoftIron has been making its case for what it calls secure provenance: a term that en Read more…

ISC 2022: International Association of Supercomputing Centers to Debut

May 23, 2022

At ISC 2022 in Hamburg, Germany, representatives from four supercomputing centers across three countries plan to debut the International Association of Supercom Read more…

ANL Special Colloquium on The Future of Computing

May 19, 2022

There are, of course, a myriad of ideas regarding computing’s future. At yesterday’s Argonne National Laboratory’s Director’s Special Colloquium, The Future of Computing, guest speaker Sadasivan Shankar, did his best to convince the audience that the high-energy cost of the current computing paradigm – not (just) economic cost; we’re talking entropy here – is fundamentally undermining computing’s progress such that... Read more…

HPE Announces New HPC Factory in Czech Republic

May 18, 2022

A week ahead of ISC High Performance 2022 (set to be held in Hamburg, Germany), supercomputing heavyweight HPE has announced a major investment in sovereign Eur Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

In Partnership with IBM, Canada to Get Its First Universal Quantum Computer

February 3, 2022

IBM today announced it will deploy its first quantum computer in Canada, putting Canada on a short list of countries that will have access to an IBM Quantum Sys Read more…

Supercomputer Simulations Show How Paxlovid, Pfizer’s Covid Antiviral, Works

February 3, 2022

Just about a month ago, Pfizer scored its second huge win of the pandemic when the U.S. Food and Drug Administration issued another emergency use authorization Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

Leading Solution Providers

Contributors

D-Wave to Go Public with SPAC Deal; Expects ~$1.6B Market Valuation

February 8, 2022

Quantum computing pioneer D-Wave today announced plans to go public via a SPAC (special purpose acquisition company) mechanism. D-Wave will merge with DPCM Capital in a transaction expected to produce $340 million in cash and result in a roughly $1.6 billion initial market valuation. The deal is expected to be completed in the second quarter of 2022 and the new company will be traded on the New York Stock... Read more…

Intel Announces Falcon Shores CPU-GPU Combo Architecture for 2024

February 18, 2022

Intel held its 2022 investor meeting yesterday, covering everything from the imminent Sapphire Rapids CPUs to the hotly anticipated (and delayed) Ponte Vecchio GPUs. But somewhat buried in its summary of the meeting was a new namedrop: “Falcon Shores,” described as “a new architecture that will bring x86 and Xe GPU together into a single socket.” The reveal was... Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

Nvidia Acquires Software-Defined Storage Provider Excelero

March 7, 2022

Nvidia has announced that it has acquired Excelero. The high-performance block storage provider, founded in 2014, will have its technology integrated into Nvidia’s enterprise software stack. Nvidia is not disclosing the value of the deal. Excelero’s core product, Excelero NVMesh, offers software-defined block storage via networked NVMe SSDs. NVMesh operates through... Read more…

Nvidia Announces ‘Eos’ Supercomputer

March 22, 2022

At GTC22 today, Nvidia unveiled its new H100 GPU, the first of its new ‘Hopper’ architecture, along with a slew of accompanying configurations, systems and Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire