IBM and NVIDIA Launch Supercomputer Centers of Excellence With ORNL and LLNL

July 13, 2015

FRANKFURT, Germany, July 13 — IBM along with NVIDIA and two U.S. Department of Energy National Laboratories today announced a pair of Centers of Excellence for supercomputing – one at the Lawrence Livermore National Laboratory and the other at the Oak Ridge National Laboratory. The collaborations are in support of IBM’s supercomputing contract with the U.S. Department of Energy. They will enable advanced, large-scale scientific and engineering applications both for supporting DOE missions, and for the Summit and Sierra supercomputer systems to be delivered respectively to Oak Ridge and Lawrence Livermore in 2017 and to be operational in 2018.

As the new supercomputers are being readied for installation, the Centers of Excellence will prepare the way for their optimum use in scientific research in such critical areas as energy, climate research, cosmology, biophysics, astrophysics and medicine, as well as in national nuclear security and other national security interests.

In an era of increasing global competition in high performance computing, the Centers are designed to enable the U.S. Department of Energy’s National Laboratories to sustain innovation leadership in science and technology while also driving down energy consumption and costs of computing.

At each of the Centers, teams of technologists will gain crucial application perspective that will complement the hardware and software development of Summit and Sierra and will enable application readiness at the time of installation. Early application code innovation, executed in tandem with the system development, allows important two-way feedback between the system developers and the application writers. This will ensure that the ongoing system design will correctly and effectively support necessary user applications.

Incorporating IBM’s advanced POWER processors with next-generation NVIDIA Tesla GPU accelerators and the NVIDIA NVLink high-speed processor interconnect, Summit and Sierra will use a highly efficient, high-performance data-centric computing approach that minimizes data in motion, thereby helping to optimize problem solving and time to solution while also greatly reducing overall energy consumption.

“Application code innovation is a vital component of making sure our facilities are prepared to take advantage of the performance of the new supercomputers,” said Michel McCoy, Program Director for Advanced Simulation and Computing at the Lawrence Livermore National Laboratory. “By partnering with IBM and NVIDIA, the Centers of Excellence bring together the people who know the science, the people who know the code, and the people who know the machines – ensuring we are innovating across the board so that Sierra and Summit will be primed to achieve their missions for national security and scientific advancement as soon as they’re delivered.”

In addition to their data-centric design, the systems follow an OpenPOWER design concept that uses IBM’s open POWER architecture, as well as OpenPOWER Foundation member technology, including NVIDIA GPU and NVLink technologies, and Mellanox’s EDR 100Gb/s InfiniBand system interconnect.. Applications developed at the Centers of Excellence will take full advantage of current and future innovations introduced by the growing OpenPOWER community of developers led in part by over 145 OpenPOWER Foundation members worldwide. Code innovations realized at the Centers will also benefit general purpose OpenPOWER-based commercial systems to be introduced by IBM and others.

A Collaborative Approach to Application Code Innovation

The two Centers of Excellence collaborations are uniquely set up to support each of the Oak Ridge and Lawrence Livermore labs’ specific missions. With each, key computational scientists from IBM and NVIDIA work closely with the applications scientists from the labs to develop tools and technologies that will optimize codes and achieve the best performance on Summit, Sierra and other general use systems that follow the OpenPOWER design concept. Together, the teams are developing new ways to think about the programming models, algorithms, applications and computer performance.

“The work accomplished through the Centers of Excellence will be a milestone in our collaboration with the U.S. Department of Energy,” said Dave Turek, IBM Vice President of HPC Market Engagement. “It is about more than just delivering our new data-centric OpenPOWER-based hardware systems. Along with NVIDIA, our scientists are ensuring Oak Ridge andLawrence Livermore are able to get the most out of these revolutionary supercomputers to reach the next level of scientific discovery. In addition, our expectation is that many of the codes that are worked on will find benefit in other sectors of the U.S. economy.”

The work of the Centers of Excellence is managed by a technical steering group, which includes participants from IBM, NVIDIA and from Lawrence Livermore, Oak Ridge and Argonne National Laboratories. This collaborative approach is designed to ensure that critical applications are able to run on all of the U.S. Department of Energy’s supercomputers.

Shaping Future Scientific Discovery

Work is already underway to update and develop applications that have the potential to shape scientific discovery for years to come.  Center of Excellence scientists will support development of at least 13 applications for Oak Ridge’s Summit supercomputer. These applications were recently selected through the Center for Accelerated Application Readiness (CAAR) program. Summit and its applications will support the Office of Science in its science and energy mission, advancing knowledge in critical areas of government, academia and industry. The modeling and simulation applications span the sciences, from cosmology to biophysics to astrophysics. One of Oak Ridge’s applications will focus on advancing Earth system models for climate research while another will map the Earth’s interior using big data for seismology research.

At Lawrence Livermore’s Center of Excellence, IBM and NVIDIA experts will provide expert knowledge and understanding of the accelerated architecture to help national security applications evolve rapidly to support the safety, reliability and security of the nuclear stockpile. These experts will also support efforts in a broad range of computational science areas of importance to national security, for instance bio-security, energy security and global warming.

The Centers of Excellence are leveraging current IBM Power Systems and OpenPOWER-based technologies for the required programming efforts, with the first prototype of the advanced supercomputers expected to be available to system developers and application writers in late 2015. The Centers of Excellence will continue to deploy updated prototype systems in order to ensure the ongoing system design will correctly and effectively support the optimized applications.

Source: IBM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit technologies), the quantum computing landscape is transforming Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire