IBM Announces Advances in Watson’s Cognitive Computing Capabilities

August 28, 2014

NEW YORK, N.Y., Aug. 28 — IBM today announced significant advances in Watson‘s cognitive computing capabilities that are enabling researchers to accelerate the pace of scientific breakthroughs by discovering previously unknown connections in Big Data.

Available now as a cloud service, IBM’s Watson Discovery Advisor is designed to scale and accelerate discoveries by research teams. It reduces the time needed to test hypotheses and formulate conclusions that can advance their work — from months to days and days to just hours — bringing new levels of speed and precision to research and development.

Building on Watson’s ability to understand nuances in natural language, Watson Discovery Advisor can understand the language of science, such as how chemical compounds interact, making it a uniquely powerful tool for researchers in life sciences and other industries.  

Researchers and scientists from leading academic, pharmaceutical and other commercial research centers have begun deploying IBM’s new Watson Discovery Advisor to rapidly analyze and test hypotheses using data in millions of scientific papers available in public databases. A new scientific research paper is published nearly every 30 seconds, which equals more than a million annually (Source: CiteSeerx). According to the National Institutes of Health, a typical researcher reads about 23 scientific papers per month, which translates to nearly 300 per year, making it humanly impossible to keep up with the ever-growing body of scientific material available.

In 2013, the top 1,000 research and development companies spent more than $600 billion annually on research alone (Source: Strategy&). Progress can be slow, taking an average of 10 to 15 years for a promising pharmaceutical treatment to progress from the initial research stage into practice (Source: Pharmaceutical Research and Manufacturers of America). Using Watson Discovery Advisor, researchers can uncover new relationships and recognize unexpected patterns among data that have the potential to significantly improve and accelerate the discovery process in research and science.

“We’re entering an extraordinary age of data-driven discovery,” said Mike Rhodin, senior vice president, IBM Watson Group. “Today’s announcement is a natural extension of Watson’s cognitive computing capability. We’re empowering researchers with a powerful tool which will help increase the impact of investments organizations make in R&D, leading to significant breakthroughs.”

Leading life sciences organizations are deploying Watson Discovery Advisor to advance discoveries in ongoing research projects, including Baylor College of Medicine, Johnson & Johnson and The New York Genome Center.

  • In a retrospective, peer reviewed study released this week by Baylor College of Medicine and IBM, scientists demonstrated a possible new path for generating scientific questions that may be helpful in the long term development of new, effective treatments for disease. In a matter of weeks, biologists and data scientists using the Baylor Knowledge Integration Toolkit (KnIT), based on Watson technology, accurately identified proteins that modify p53, an important protein related to many cancers, which can eventually lead to better efficacy of drugs and other treatments. A feat that would have taken researchers years to accomplish without Watson’s cognitive capabilities, Watson analyzed 70,000 scientific articles on p53 to predict proteins that turn on or off p53’s activity. This automated analysis led the Baylor cancer researchers to identify six potential proteins to target for new research. These results are notable, considering that over the last 30 years, scientists averaged one similar target protein discovery per year. 

“On average, a scientist might read between one and five research papers on a good day,” said Dr. Olivier Lichtarge, the principal investigator and professor of molecular and human genetics, biochemistry and molecular biology at Baylor College of Medicine. “To put this in perspective with p53, there are over 70,000 papers published on this protein. Even if I’m reading five papers a day, it could take me nearly 38 years to completely understand all of the research already available today on this protein. Watson has demonstrated the potential to accelerate the rate and the quality of breakthrough discoveries. “

  • Johnson & Johnson is collaborating with the IBM Watson Discovery Advisor team to teach Watson to read and understand scientific papers that detail clinical trial outcomes used to develop and evaluate medications and other treatments. This collaboration hopes to accelerate comparative effectiveness studies of drugs, which help doctors match a drug with the right set of patients to maximize effectiveness and minimize side effects. Typically, comparative effectiveness studies are done manually, requiring three people to spend an average of 10 months (2.5 man-years) just to collect the data and prepare them for use before they are able to start analyzing, generating and validating a hypothesis. In this research study, the team hopes to teach Watson to quickly synthesize the information directly from the medical literature, allowing researchers to start asking questions about the data immediately to determine the effectiveness of a treatment compared to other medications, as well as its side effects. 
  • Sanofi is exploring how  working with Watson can speed up the discovery of alternate indications for existing drugs (drug re-purposing). Watson is able to understand and extract key information by reading millions of pages of scientific literature and then visualizes relationships between drugs and other potential diseases they could target while providing supporting evidence each step of the way. Drug Safety and Toxicity is a major driver of the high failure rate in clinical development /  trials.  Sanofi is exploring how Watson’s ability to understand, extract and organize toxicological information can enable researchers to make better informed decisions with respect to candidate progression
  • IBM Watson will be supporting the analysis in New York Genome Center’s clinical study to advance genomic medicine. The clinical study will initially focus on clinical application of genomics to help oncologists deliver DNA-based treatment for glioblastoma, an aggressive form of brain cancer that kills more than 13,000 Americans each year. Despite tremendous discoveries into the genetic drivers of diseases like cancer over the past decade, big data makes it difficult to translate DNA data into life-saving treatments. Based on results from the clinical study, IBM Watson could soon help scale up the availability of personalized treatment options.

Industry Implications 

Discovering something new is applicable to many domains such as medicine, law, finance, etc., that all require deep insight into a large body of information and protocols. Cognitive computing will allow human experts to interact with large bodies of data and research and the knowledge and insight of many other experts in their field. For example, Watson could be used to:

  • Accelerate a medical researcher’s ability to develop life-saving treatments for diseases by synthesizing evidence and removing reliance on serendipity
  • Enhance a financial analyst’s ability to provide proactive advice to clients
  • Improve a lawyer’s merger and acquisition strategy with faster, more comprehensive due diligence and document analysis
  • Accelerate a government analyst’s insight into security, intelligence, border protection and law enforcement and guidance, etc.
  • Create new food recipes. Chefs can use Watson to augment their creativity and expertise and help them discover recipes, learning about the language of cooking and food by reading recipes, statistical, molecular and food pairing theories, hedonic chemistry, as well as regional and cultural knowledge

Source: IBM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This