IBM Announces Advances in Watson’s Cognitive Computing Capabilities

August 28, 2014

NEW YORK, N.Y., Aug. 28 — IBM today announced significant advances in Watson‘s cognitive computing capabilities that are enabling researchers to accelerate the pace of scientific breakthroughs by discovering previously unknown connections in Big Data.

Available now as a cloud service, IBM’s Watson Discovery Advisor is designed to scale and accelerate discoveries by research teams. It reduces the time needed to test hypotheses and formulate conclusions that can advance their work — from months to days and days to just hours — bringing new levels of speed and precision to research and development.

Building on Watson’s ability to understand nuances in natural language, Watson Discovery Advisor can understand the language of science, such as how chemical compounds interact, making it a uniquely powerful tool for researchers in life sciences and other industries.  

Researchers and scientists from leading academic, pharmaceutical and other commercial research centers have begun deploying IBM’s new Watson Discovery Advisor to rapidly analyze and test hypotheses using data in millions of scientific papers available in public databases. A new scientific research paper is published nearly every 30 seconds, which equals more than a million annually (Source: CiteSeerx). According to the National Institutes of Health, a typical researcher reads about 23 scientific papers per month, which translates to nearly 300 per year, making it humanly impossible to keep up with the ever-growing body of scientific material available.

In 2013, the top 1,000 research and development companies spent more than $600 billion annually on research alone (Source: Strategy&). Progress can be slow, taking an average of 10 to 15 years for a promising pharmaceutical treatment to progress from the initial research stage into practice (Source: Pharmaceutical Research and Manufacturers of America). Using Watson Discovery Advisor, researchers can uncover new relationships and recognize unexpected patterns among data that have the potential to significantly improve and accelerate the discovery process in research and science.

“We’re entering an extraordinary age of data-driven discovery,” said Mike Rhodin, senior vice president, IBM Watson Group. “Today’s announcement is a natural extension of Watson’s cognitive computing capability. We’re empowering researchers with a powerful tool which will help increase the impact of investments organizations make in R&D, leading to significant breakthroughs.”

Leading life sciences organizations are deploying Watson Discovery Advisor to advance discoveries in ongoing research projects, including Baylor College of Medicine, Johnson & Johnson and The New York Genome Center.

  • In a retrospective, peer reviewed study released this week by Baylor College of Medicine and IBM, scientists demonstrated a possible new path for generating scientific questions that may be helpful in the long term development of new, effective treatments for disease. In a matter of weeks, biologists and data scientists using the Baylor Knowledge Integration Toolkit (KnIT), based on Watson technology, accurately identified proteins that modify p53, an important protein related to many cancers, which can eventually lead to better efficacy of drugs and other treatments. A feat that would have taken researchers years to accomplish without Watson’s cognitive capabilities, Watson analyzed 70,000 scientific articles on p53 to predict proteins that turn on or off p53’s activity. This automated analysis led the Baylor cancer researchers to identify six potential proteins to target for new research. These results are notable, considering that over the last 30 years, scientists averaged one similar target protein discovery per year. 

“On average, a scientist might read between one and five research papers on a good day,” said Dr. Olivier Lichtarge, the principal investigator and professor of molecular and human genetics, biochemistry and molecular biology at Baylor College of Medicine. “To put this in perspective with p53, there are over 70,000 papers published on this protein. Even if I’m reading five papers a day, it could take me nearly 38 years to completely understand all of the research already available today on this protein. Watson has demonstrated the potential to accelerate the rate and the quality of breakthrough discoveries. “

  • Johnson & Johnson is collaborating with the IBM Watson Discovery Advisor team to teach Watson to read and understand scientific papers that detail clinical trial outcomes used to develop and evaluate medications and other treatments. This collaboration hopes to accelerate comparative effectiveness studies of drugs, which help doctors match a drug with the right set of patients to maximize effectiveness and minimize side effects. Typically, comparative effectiveness studies are done manually, requiring three people to spend an average of 10 months (2.5 man-years) just to collect the data and prepare them for use before they are able to start analyzing, generating and validating a hypothesis. In this research study, the team hopes to teach Watson to quickly synthesize the information directly from the medical literature, allowing researchers to start asking questions about the data immediately to determine the effectiveness of a treatment compared to other medications, as well as its side effects. 
  • Sanofi is exploring how  working with Watson can speed up the discovery of alternate indications for existing drugs (drug re-purposing). Watson is able to understand and extract key information by reading millions of pages of scientific literature and then visualizes relationships between drugs and other potential diseases they could target while providing supporting evidence each step of the way. Drug Safety and Toxicity is a major driver of the high failure rate in clinical development /  trials.  Sanofi is exploring how Watson’s ability to understand, extract and organize toxicological information can enable researchers to make better informed decisions with respect to candidate progression
  • IBM Watson will be supporting the analysis in New York Genome Center’s clinical study to advance genomic medicine. The clinical study will initially focus on clinical application of genomics to help oncologists deliver DNA-based treatment for glioblastoma, an aggressive form of brain cancer that kills more than 13,000 Americans each year. Despite tremendous discoveries into the genetic drivers of diseases like cancer over the past decade, big data makes it difficult to translate DNA data into life-saving treatments. Based on results from the clinical study, IBM Watson could soon help scale up the availability of personalized treatment options.

Industry Implications 

Discovering something new is applicable to many domains such as medicine, law, finance, etc., that all require deep insight into a large body of information and protocols. Cognitive computing will allow human experts to interact with large bodies of data and research and the knowledge and insight of many other experts in their field. For example, Watson could be used to:

  • Accelerate a medical researcher’s ability to develop life-saving treatments for diseases by synthesizing evidence and removing reliance on serendipity
  • Enhance a financial analyst’s ability to provide proactive advice to clients
  • Improve a lawyer’s merger and acquisition strategy with faster, more comprehensive due diligence and document analysis
  • Accelerate a government analyst’s insight into security, intelligence, border protection and law enforcement and guidance, etc.
  • Create new food recipes. Chefs can use Watson to augment their creativity and expertise and help them discover recipes, learning about the language of cooking and food by reading recipes, statistical, molecular and food pairing theories, hedonic chemistry, as well as regional and cultural knowledge

Source: IBM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This