IDC Announces Winners of HPC Innovation Excellence Awards

November 19, 2013

DENVER, Colo., Nov. 19 — International Data Corporation (IDC) today announced the sixth round of recipients of the HPC Innovation Excellence Award at the ISC’13 supercomputer industry conference in Leipzig, Germany. Prior winners were announced at the ISC’11, SC’11, ISC’12, SC’12, and ISC’13 supercomputing conferences.

The HPC Innovation Excellence Award recognizes noteworthy achievements by users of high performance computing (HPC) technologies. The program’s main goals are: to showcase return on investment (ROI) and scientific innovation success stories involving HPC; to help other users better understand the benefits of adopting HPC and justify HPC investments, especially for small and medium-size businesses (SMBs); to demonstrate the value of HPC to funding bodies and politicians; and to expand public support for increased HPC investments.

“IDC research has shown that HPC can impact innovation cycles greatly and can potentially generate ROI. The award program aims to collect a large set of success stories across many research disciplines, industries, and application areas,” said Chirag Dekate, Research Manager, High-Performance Systems at IDC. “The winners achieved clear success in applying HPC to greatly improve business ROI, scientific advancement, and/or engineering successes. Many of the achievements also directly benefit society.”

Winners of the first five rounds of awards, announced in 2011, 2012 and at ISC’13, included 29 organizations from the U.S., 3 each from Italy and the People’s Republic of China, 2 each from India and the UK, and 1 each from Australia, Canada, Spain, and Sweden.

The new award winners and project leaders announced at ISC’13 are as follows (contact IDC for additional details about the projects):

  • GE Global Research (U.S.) Using a 40 million CPU hour Department of Energy award, GE Global Research has modeled the freezing behavior of water droplets on six different engineered surfaces under six operating conditions on the hybrid CPU/GPU Titan at Oak Ridge National Lab (ORNL). Through recent advances in the field, including a joint simulation enhancement effort with Oak Ridge National Lab to fully leverage hardware infrastructures, GE Global Research has been able to accelerate simulations by approximately 200-fold compared to even just two years ago. Lead: Masako Yamada
  • The Procter & Gamble Company (U.S.) P&G researchers and collaborators at Temple University developed models at the molecular and mesoscale level to understand complex molecular interactions of full formula consumer products such as shampoos, conditioners, facial creams, laundry detergents, etc. The HPC-driven research helped shed light on the performance of the complex formula interactions versus inferring performance based on isolated calculations. Results of the HPC -driven research led to a better understanding of interfacial phenomena, phase behavior, and the performance of several P&G products. Lead: Kelly L. Anderson
  • National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information (Korea) The EDISON (EDucation and research Integration through Simulation On the Net) Project, funded by the Ministry of Science, ICT and Future Planning, Korea, established an infrastructure on the Web where users across the country could easily access and utilize various engineering/science simulation tools for educational and research purposes. The EDISON project is accelerating research in five key areas: Computational Fluid Dynamics, Computational Chemistry, Nano Physics, Computational Structural Dynamics, and Multi-disciplinary Optimization. The Project utilizes a novel partnership model between the project and the respective domains to develop area-specific simulation tools that make HPC accessible to domain specialists. Lead: Kumwon Cho
  • GE Global Research (U.S.) GE Global Research’s work on Large Eddy Simulations (LES) leveraged petascale computing to break barriers in accurately characterizing the key flow physics of multi-scale turbulent mixing in boundary layer and shear flows. Findings from this research will significantly improve the prediction and design capabilities for next-generation aircraft engines and wind turbines, both from demonstrating the viability of LES as a characterization tool and as a source of physics guidance. Lead: Umesh Paliath
  • Spectraseis Inc (U.S.) and CADMOS, University of Lausanne (Switzerland) Researchers doubled both acoustic and elastic solver throughput, at the same time improving code size and maintainability, harnessing the massive parallel computing capabilities of Fermi and Kepler GPUs. With improved efficacies obtained by code redesign for GPU the time to solution was reduced from hours to seconds. The improved capability allowed Spectraseis to move from 2D to 3D and, in several cases, obtain more than 100x speed-up. Lead: Igor Podladtchikov and Yury Podladchikov
  • Intelligent Light (U.S.) Intelligent Light addressed the challenge of high volumes of CFD data using FieldView 14 data management and process automation tools. Intelligent Light contributed results from approximately 100 cases with more than 10,000 time steps each to deliver a complete response to the workshop objectives. A Cray XE6 was used to generate the CFD solutions and perform much of the post-processing. This project successfully demonstrated the value and practicality of using innovative workflow engineering with automation and data management for complex CFD studies. Lead: Dr. Earl P.N. Duque
  • Facebook (U.S.) Facebook manages a social graph that is composed of people, their friendships, subscriptions, and other connections. Facebook modified Apache Giraph to allow loading vertex data and edges from separate sources (GIRAPH-155). Facebook was able to run an iteration of page rank on an actual one trillion edge social graph formed by various user interactions in fewer than four minutes with the appropriate garbage collection and performance tuning. Facebook can now cluster a monthly active user data set of one billion input vectors with 100 features into 10,000 centroids with k-means in less than 10 minutes per iteration.Lead: Avery Ching / Apache Giraph
  • HydrOcean/Ecole Centrale Nantes (France) SPH-flow is an innovative fluid dynamic solver based on a meshless, compressible, and time-explicit approach. SPH-flow solver has been used in several industrial projects, including: impact forces of aircraft and helicopter ditching; free surface simulations of ship wake and wave fields; multiphase emulsion simulations; extreme wave impacts on structures; simulation of hydroplaning of tires; water film around car bodies; and underwater explosions. This project is lead by Dr. Erwan Jacqin, CEO of HydrOcean, a spinoff from Ecole Centrale fluid dynamic lab, and Prof. David Le Touze, in charge of the SPH-flow research team at Ecole Centrale Nantes.
  • Imperial College London and NAG (UK) HPC experts from NAG and Imperial College London have implemented scientifically valuable new functionality and substantial performance improvements in the Incompact3D application. After the improvements, the simulations can now scale to 8000 cores efficiently, with a run time of around 3.75 days (wall-clock time), which is over 6x faster. Furthermore, meshes for new high resolution turbulence mixing and flow control simulations, which use up to 4096*4096*4096 grid points, can now utilize as many as 16384 cores. Lead: NAG HECToR CSE Team
  • Queen Mary University of London and NAG (UK) NAG and Queen Mary University of London made significant improvements to CABARET (Compact Accurate Boundary Adjusting high Resolution Technique) code so that it may be used to solve the compressible Navier-Stokes equations and, in the context of this project, for the investigation of aircraft noise. The newly developed code was validated and tested against the serial code and a parallel efficiency of 72% was observed when using 250 cores of the XT4 part of HECToR with the quad core architecture. Lead: NAG HECToR CSE Team
  • Southern California Earthquake Center (U.S.) SCEC has built a special simulation platform, CyberShake, which uses the time-reversal physics of seismic reciprocity to reduce the computational cost by 1000x. Additionally, the production time for a complete regional CyberShake model at seismic frequencies up to 0.5 Hz has been reduced by 10x, and four new hazard models have been run on NCSA Blue Waters and TACC Stampede. SCEC researchers have developed highly parallel, highly efficient CUDA-optimized wave propagation code, called AWP-ODC-GPU, that achieved a sustained performance of 2.8 Petaflops on ORNL Titan. LEAD: Southern California Earthquake Center Community Modeling Environment Collaboration
  • Princeton University/Princeton Plasma Physics Laboratory (U.S.) Using high-end supercomputing resources, advanced simulations of confinement physics for large-scale MFE plasmas have been carried out for the first time with very high phase-space resolution and long temporal duration to deliver important new scientific insights. This research was enabled by the new GTC-P code, developed to use multi-petascale capabilities on world-class systems such as the IBM BG-Q “Mira” @ ALCF and “Sequoia” @ LLNL. Leads: William Tang, Bei Wang, and Stephane Ethier
  • Oak Ridge Leadership Computing Facility, Oak Ridge National Laboratory (U.S.) Researchers at ORNL have used the Titan supercomputer to perform the first simulations of organic solar cell active layers at scales commensurate with actual devices. By modifying the LAMMPS molecular dynamics software to use GPU acceleration on Titan, the researchers were able to perform simulations to study how different polymer blends can be used to alter the device morphology. The new insights will aid in the rational design of cheap solar cells with higher efficiency. Results are published in the journal Physical Chemistry Chemical PhysicsLead: W. Michael Brown and Jack C. Wells
  • Ford Werke GmbH (Germany) Researchers at Ford Werke GmbH have developed and deployed a new CAE process, which enables the optimization of the airflow through the cooling package of a vehicle using complex 3D CFD analysis. The Ford team also demonstrated it could run these complex simulations fast enough to enable their use within the time constraints of a vehicle development project. The team’s work on Jaguar at Oak Ridge National Lab will help Ford maximize the effectiveness and fuel efficiency of engine bay designs throughout the company. Lead: Dr. Burkhard Hupertz and Alex Akkerman

IDC welcomes award entries from anywhere in the world. Entries may be submitted at any time by completing the brief form available at https://www.hpcuserforum.com/innovationaward/. New winners will be announced multiple times each year. Submissions must contain a clear description of the dollar value or scientific value received in order to qualify. The HPC User Forum Steering Committee performs an initial ranking of the submissions, after which domain and vertical experts are called on, as needed, to evaluate the submissions.

HPC Innovation Excellence Award sponsors include Adaptive Computing, Altair, AMD, Ansys, Cray, Avetec/DICE, the Boeing Company, the Council on Competitiveness, Department of Defense, Department of Energy, Ford Motor Company, Hewlett Packard, HPCwire, insideHPC, Intel, Microsoft, National Science Foundation, NCSA, Platform Computing, Scientific Computing, and SGI.

The next round of HPC Innovation Excellence Award winners will be announced at ISC’14 in June 2014.

About IDC

International Data Corporation (IDC) is the premier global provider of market intelligence, advisory services, and events for the information technology, telecommunications, and consumer technology markets. IDC helps IT professionals, business executives, and the investment community to make fact-based decisions on technology purchases and business strategy. More than 1,000 IDC analysts provide global, regional, and local expertise on technology and industry opportunities and trends in over 110 countries. For more than 49 years, IDC has provided strategic insights to help our clients achieve their key business objectives. IDC is a subsidiary of IDG, the world’s leading technology media, research, and events company. You can learn more about IDC by visiting www.idc.com.

—–

Source: IDC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflops Tianhe-2 and currently with the 93-petaflops TaihuLight. T Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present usability and programmability problems that flummox IT shops. Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflop Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present u Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Singularity HPC Container Technology Moves Out of the Lab

May 4, 2017

Last week, Singularity – the fast-growing HPC container technology whose development has been spearheaded by Gregory Kurtzer at Lawrence Berkeley National Lab Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This