IDC Announces Winners of HPC Innovation Excellence Awards

November 19, 2013

DENVER, Colo., Nov. 19 — International Data Corporation (IDC) today announced the sixth round of recipients of the HPC Innovation Excellence Award at the ISC’13 supercomputer industry conference in Leipzig, Germany. Prior winners were announced at the ISC’11, SC’11, ISC’12, SC’12, and ISC’13 supercomputing conferences.

The HPC Innovation Excellence Award recognizes noteworthy achievements by users of high performance computing (HPC) technologies. The program’s main goals are: to showcase return on investment (ROI) and scientific innovation success stories involving HPC; to help other users better understand the benefits of adopting HPC and justify HPC investments, especially for small and medium-size businesses (SMBs); to demonstrate the value of HPC to funding bodies and politicians; and to expand public support for increased HPC investments.

“IDC research has shown that HPC can impact innovation cycles greatly and can potentially generate ROI. The award program aims to collect a large set of success stories across many research disciplines, industries, and application areas,” said Chirag Dekate, Research Manager, High-Performance Systems at IDC. “The winners achieved clear success in applying HPC to greatly improve business ROI, scientific advancement, and/or engineering successes. Many of the achievements also directly benefit society.”

Winners of the first five rounds of awards, announced in 2011, 2012 and at ISC’13, included 29 organizations from the U.S., 3 each from Italy and the People’s Republic of China, 2 each from India and the UK, and 1 each from Australia, Canada, Spain, and Sweden.

The new award winners and project leaders announced at ISC’13 are as follows (contact IDC for additional details about the projects):

  • GE Global Research (U.S.) Using a 40 million CPU hour Department of Energy award, GE Global Research has modeled the freezing behavior of water droplets on six different engineered surfaces under six operating conditions on the hybrid CPU/GPU Titan at Oak Ridge National Lab (ORNL). Through recent advances in the field, including a joint simulation enhancement effort with Oak Ridge National Lab to fully leverage hardware infrastructures, GE Global Research has been able to accelerate simulations by approximately 200-fold compared to even just two years ago. Lead: Masako Yamada
  • The Procter & Gamble Company (U.S.) P&G researchers and collaborators at Temple University developed models at the molecular and mesoscale level to understand complex molecular interactions of full formula consumer products such as shampoos, conditioners, facial creams, laundry detergents, etc. The HPC-driven research helped shed light on the performance of the complex formula interactions versus inferring performance based on isolated calculations. Results of the HPC -driven research led to a better understanding of interfacial phenomena, phase behavior, and the performance of several P&G products. Lead: Kelly L. Anderson
  • National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information (Korea) The EDISON (EDucation and research Integration through Simulation On the Net) Project, funded by the Ministry of Science, ICT and Future Planning, Korea, established an infrastructure on the Web where users across the country could easily access and utilize various engineering/science simulation tools for educational and research purposes. The EDISON project is accelerating research in five key areas: Computational Fluid Dynamics, Computational Chemistry, Nano Physics, Computational Structural Dynamics, and Multi-disciplinary Optimization. The Project utilizes a novel partnership model between the project and the respective domains to develop area-specific simulation tools that make HPC accessible to domain specialists. Lead: Kumwon Cho
  • GE Global Research (U.S.) GE Global Research’s work on Large Eddy Simulations (LES) leveraged petascale computing to break barriers in accurately characterizing the key flow physics of multi-scale turbulent mixing in boundary layer and shear flows. Findings from this research will significantly improve the prediction and design capabilities for next-generation aircraft engines and wind turbines, both from demonstrating the viability of LES as a characterization tool and as a source of physics guidance. Lead: Umesh Paliath
  • Spectraseis Inc (U.S.) and CADMOS, University of Lausanne (Switzerland) Researchers doubled both acoustic and elastic solver throughput, at the same time improving code size and maintainability, harnessing the massive parallel computing capabilities of Fermi and Kepler GPUs. With improved efficacies obtained by code redesign for GPU the time to solution was reduced from hours to seconds. The improved capability allowed Spectraseis to move from 2D to 3D and, in several cases, obtain more than 100x speed-up. Lead: Igor Podladtchikov and Yury Podladchikov
  • Intelligent Light (U.S.) Intelligent Light addressed the challenge of high volumes of CFD data using FieldView 14 data management and process automation tools. Intelligent Light contributed results from approximately 100 cases with more than 10,000 time steps each to deliver a complete response to the workshop objectives. A Cray XE6 was used to generate the CFD solutions and perform much of the post-processing. This project successfully demonstrated the value and practicality of using innovative workflow engineering with automation and data management for complex CFD studies. Lead: Dr. Earl P.N. Duque
  • Facebook (U.S.) Facebook manages a social graph that is composed of people, their friendships, subscriptions, and other connections. Facebook modified Apache Giraph to allow loading vertex data and edges from separate sources (GIRAPH-155). Facebook was able to run an iteration of page rank on an actual one trillion edge social graph formed by various user interactions in fewer than four minutes with the appropriate garbage collection and performance tuning. Facebook can now cluster a monthly active user data set of one billion input vectors with 100 features into 10,000 centroids with k-means in less than 10 minutes per iteration.Lead: Avery Ching / Apache Giraph
  • HydrOcean/Ecole Centrale Nantes (France) SPH-flow is an innovative fluid dynamic solver based on a meshless, compressible, and time-explicit approach. SPH-flow solver has been used in several industrial projects, including: impact forces of aircraft and helicopter ditching; free surface simulations of ship wake and wave fields; multiphase emulsion simulations; extreme wave impacts on structures; simulation of hydroplaning of tires; water film around car bodies; and underwater explosions. This project is lead by Dr. Erwan Jacqin, CEO of HydrOcean, a spinoff from Ecole Centrale fluid dynamic lab, and Prof. David Le Touze, in charge of the SPH-flow research team at Ecole Centrale Nantes.
  • Imperial College London and NAG (UK) HPC experts from NAG and Imperial College London have implemented scientifically valuable new functionality and substantial performance improvements in the Incompact3D application. After the improvements, the simulations can now scale to 8000 cores efficiently, with a run time of around 3.75 days (wall-clock time), which is over 6x faster. Furthermore, meshes for new high resolution turbulence mixing and flow control simulations, which use up to 4096*4096*4096 grid points, can now utilize as many as 16384 cores. Lead: NAG HECToR CSE Team
  • Queen Mary University of London and NAG (UK) NAG and Queen Mary University of London made significant improvements to CABARET (Compact Accurate Boundary Adjusting high Resolution Technique) code so that it may be used to solve the compressible Navier-Stokes equations and, in the context of this project, for the investigation of aircraft noise. The newly developed code was validated and tested against the serial code and a parallel efficiency of 72% was observed when using 250 cores of the XT4 part of HECToR with the quad core architecture. Lead: NAG HECToR CSE Team
  • Southern California Earthquake Center (U.S.) SCEC has built a special simulation platform, CyberShake, which uses the time-reversal physics of seismic reciprocity to reduce the computational cost by 1000x. Additionally, the production time for a complete regional CyberShake model at seismic frequencies up to 0.5 Hz has been reduced by 10x, and four new hazard models have been run on NCSA Blue Waters and TACC Stampede. SCEC researchers have developed highly parallel, highly efficient CUDA-optimized wave propagation code, called AWP-ODC-GPU, that achieved a sustained performance of 2.8 Petaflops on ORNL Titan. LEAD: Southern California Earthquake Center Community Modeling Environment Collaboration
  • Princeton University/Princeton Plasma Physics Laboratory (U.S.) Using high-end supercomputing resources, advanced simulations of confinement physics for large-scale MFE plasmas have been carried out for the first time with very high phase-space resolution and long temporal duration to deliver important new scientific insights. This research was enabled by the new GTC-P code, developed to use multi-petascale capabilities on world-class systems such as the IBM BG-Q “Mira” @ ALCF and “Sequoia” @ LLNL. Leads: William Tang, Bei Wang, and Stephane Ethier
  • Oak Ridge Leadership Computing Facility, Oak Ridge National Laboratory (U.S.) Researchers at ORNL have used the Titan supercomputer to perform the first simulations of organic solar cell active layers at scales commensurate with actual devices. By modifying the LAMMPS molecular dynamics software to use GPU acceleration on Titan, the researchers were able to perform simulations to study how different polymer blends can be used to alter the device morphology. The new insights will aid in the rational design of cheap solar cells with higher efficiency. Results are published in the journal Physical Chemistry Chemical PhysicsLead: W. Michael Brown and Jack C. Wells
  • Ford Werke GmbH (Germany) Researchers at Ford Werke GmbH have developed and deployed a new CAE process, which enables the optimization of the airflow through the cooling package of a vehicle using complex 3D CFD analysis. The Ford team also demonstrated it could run these complex simulations fast enough to enable their use within the time constraints of a vehicle development project. The team’s work on Jaguar at Oak Ridge National Lab will help Ford maximize the effectiveness and fuel efficiency of engine bay designs throughout the company. Lead: Dr. Burkhard Hupertz and Alex Akkerman

IDC welcomes award entries from anywhere in the world. Entries may be submitted at any time by completing the brief form available at https://www.hpcuserforum.com/innovationaward/. New winners will be announced multiple times each year. Submissions must contain a clear description of the dollar value or scientific value received in order to qualify. The HPC User Forum Steering Committee performs an initial ranking of the submissions, after which domain and vertical experts are called on, as needed, to evaluate the submissions.

HPC Innovation Excellence Award sponsors include Adaptive Computing, Altair, AMD, Ansys, Cray, Avetec/DICE, the Boeing Company, the Council on Competitiveness, Department of Defense, Department of Energy, Ford Motor Company, Hewlett Packard, HPCwire, insideHPC, Intel, Microsoft, National Science Foundation, NCSA, Platform Computing, Scientific Computing, and SGI.

The next round of HPC Innovation Excellence Award winners will be announced at ISC’14 in June 2014.

About IDC

International Data Corporation (IDC) is the premier global provider of market intelligence, advisory services, and events for the information technology, telecommunications, and consumer technology markets. IDC helps IT professionals, business executives, and the investment community to make fact-based decisions on technology purchases and business strategy. More than 1,000 IDC analysts provide global, regional, and local expertise on technology and industry opportunities and trends in over 110 countries. For more than 49 years, IDC has provided strategic insights to help our clients achieve their key business objectives. IDC is a subsidiary of IDG, the world’s leading technology media, research, and events company. You can learn more about IDC by visiting www.idc.com.

—–

Source: IDC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This