IDC Announces Winners of HPC Innovation Excellence Awards

November 19, 2013

DENVER, Colo., Nov. 19 — International Data Corporation (IDC) today announced the sixth round of recipients of the HPC Innovation Excellence Award at the ISC’13 supercomputer industry conference in Leipzig, Germany. Prior winners were announced at the ISC’11, SC’11, ISC’12, SC’12, and ISC’13 supercomputing conferences.

The HPC Innovation Excellence Award recognizes noteworthy achievements by users of high performance computing (HPC) technologies. The program’s main goals are: to showcase return on investment (ROI) and scientific innovation success stories involving HPC; to help other users better understand the benefits of adopting HPC and justify HPC investments, especially for small and medium-size businesses (SMBs); to demonstrate the value of HPC to funding bodies and politicians; and to expand public support for increased HPC investments.

“IDC research has shown that HPC can impact innovation cycles greatly and can potentially generate ROI. The award program aims to collect a large set of success stories across many research disciplines, industries, and application areas,” said Chirag Dekate, Research Manager, High-Performance Systems at IDC. “The winners achieved clear success in applying HPC to greatly improve business ROI, scientific advancement, and/or engineering successes. Many of the achievements also directly benefit society.”

Winners of the first five rounds of awards, announced in 2011, 2012 and at ISC’13, included 29 organizations from the U.S., 3 each from Italy and the People’s Republic of China, 2 each from India and the UK, and 1 each from Australia, Canada, Spain, and Sweden.

The new award winners and project leaders announced at ISC’13 are as follows (contact IDC for additional details about the projects):

  • GE Global Research (U.S.) Using a 40 million CPU hour Department of Energy award, GE Global Research has modeled the freezing behavior of water droplets on six different engineered surfaces under six operating conditions on the hybrid CPU/GPU Titan at Oak Ridge National Lab (ORNL). Through recent advances in the field, including a joint simulation enhancement effort with Oak Ridge National Lab to fully leverage hardware infrastructures, GE Global Research has been able to accelerate simulations by approximately 200-fold compared to even just two years ago. Lead: Masako Yamada
  • The Procter & Gamble Company (U.S.) P&G researchers and collaborators at Temple University developed models at the molecular and mesoscale level to understand complex molecular interactions of full formula consumer products such as shampoos, conditioners, facial creams, laundry detergents, etc. The HPC-driven research helped shed light on the performance of the complex formula interactions versus inferring performance based on isolated calculations. Results of the HPC -driven research led to a better understanding of interfacial phenomena, phase behavior, and the performance of several P&G products. Lead: Kelly L. Anderson
  • National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information (Korea) The EDISON (EDucation and research Integration through Simulation On the Net) Project, funded by the Ministry of Science, ICT and Future Planning, Korea, established an infrastructure on the Web where users across the country could easily access and utilize various engineering/science simulation tools for educational and research purposes. The EDISON project is accelerating research in five key areas: Computational Fluid Dynamics, Computational Chemistry, Nano Physics, Computational Structural Dynamics, and Multi-disciplinary Optimization. The Project utilizes a novel partnership model between the project and the respective domains to develop area-specific simulation tools that make HPC accessible to domain specialists. Lead: Kumwon Cho
  • GE Global Research (U.S.) GE Global Research’s work on Large Eddy Simulations (LES) leveraged petascale computing to break barriers in accurately characterizing the key flow physics of multi-scale turbulent mixing in boundary layer and shear flows. Findings from this research will significantly improve the prediction and design capabilities for next-generation aircraft engines and wind turbines, both from demonstrating the viability of LES as a characterization tool and as a source of physics guidance. Lead: Umesh Paliath
  • Spectraseis Inc (U.S.) and CADMOS, University of Lausanne (Switzerland) Researchers doubled both acoustic and elastic solver throughput, at the same time improving code size and maintainability, harnessing the massive parallel computing capabilities of Fermi and Kepler GPUs. With improved efficacies obtained by code redesign for GPU the time to solution was reduced from hours to seconds. The improved capability allowed Spectraseis to move from 2D to 3D and, in several cases, obtain more than 100x speed-up. Lead: Igor Podladtchikov and Yury Podladchikov
  • Intelligent Light (U.S.) Intelligent Light addressed the challenge of high volumes of CFD data using FieldView 14 data management and process automation tools. Intelligent Light contributed results from approximately 100 cases with more than 10,000 time steps each to deliver a complete response to the workshop objectives. A Cray XE6 was used to generate the CFD solutions and perform much of the post-processing. This project successfully demonstrated the value and practicality of using innovative workflow engineering with automation and data management for complex CFD studies. Lead: Dr. Earl P.N. Duque
  • Facebook (U.S.) Facebook manages a social graph that is composed of people, their friendships, subscriptions, and other connections. Facebook modified Apache Giraph to allow loading vertex data and edges from separate sources (GIRAPH-155). Facebook was able to run an iteration of page rank on an actual one trillion edge social graph formed by various user interactions in fewer than four minutes with the appropriate garbage collection and performance tuning. Facebook can now cluster a monthly active user data set of one billion input vectors with 100 features into 10,000 centroids with k-means in less than 10 minutes per iteration.Lead: Avery Ching / Apache Giraph
  • HydrOcean/Ecole Centrale Nantes (France) SPH-flow is an innovative fluid dynamic solver based on a meshless, compressible, and time-explicit approach. SPH-flow solver has been used in several industrial projects, including: impact forces of aircraft and helicopter ditching; free surface simulations of ship wake and wave fields; multiphase emulsion simulations; extreme wave impacts on structures; simulation of hydroplaning of tires; water film around car bodies; and underwater explosions. This project is lead by Dr. Erwan Jacqin, CEO of HydrOcean, a spinoff from Ecole Centrale fluid dynamic lab, and Prof. David Le Touze, in charge of the SPH-flow research team at Ecole Centrale Nantes.
  • Imperial College London and NAG (UK) HPC experts from NAG and Imperial College London have implemented scientifically valuable new functionality and substantial performance improvements in the Incompact3D application. After the improvements, the simulations can now scale to 8000 cores efficiently, with a run time of around 3.75 days (wall-clock time), which is over 6x faster. Furthermore, meshes for new high resolution turbulence mixing and flow control simulations, which use up to 4096*4096*4096 grid points, can now utilize as many as 16384 cores. Lead: NAG HECToR CSE Team
  • Queen Mary University of London and NAG (UK) NAG and Queen Mary University of London made significant improvements to CABARET (Compact Accurate Boundary Adjusting high Resolution Technique) code so that it may be used to solve the compressible Navier-Stokes equations and, in the context of this project, for the investigation of aircraft noise. The newly developed code was validated and tested against the serial code and a parallel efficiency of 72% was observed when using 250 cores of the XT4 part of HECToR with the quad core architecture. Lead: NAG HECToR CSE Team
  • Southern California Earthquake Center (U.S.) SCEC has built a special simulation platform, CyberShake, which uses the time-reversal physics of seismic reciprocity to reduce the computational cost by 1000x. Additionally, the production time for a complete regional CyberShake model at seismic frequencies up to 0.5 Hz has been reduced by 10x, and four new hazard models have been run on NCSA Blue Waters and TACC Stampede. SCEC researchers have developed highly parallel, highly efficient CUDA-optimized wave propagation code, called AWP-ODC-GPU, that achieved a sustained performance of 2.8 Petaflops on ORNL Titan. LEAD: Southern California Earthquake Center Community Modeling Environment Collaboration
  • Princeton University/Princeton Plasma Physics Laboratory (U.S.) Using high-end supercomputing resources, advanced simulations of confinement physics for large-scale MFE plasmas have been carried out for the first time with very high phase-space resolution and long temporal duration to deliver important new scientific insights. This research was enabled by the new GTC-P code, developed to use multi-petascale capabilities on world-class systems such as the IBM BG-Q “Mira” @ ALCF and “Sequoia” @ LLNL. Leads: William Tang, Bei Wang, and Stephane Ethier
  • Oak Ridge Leadership Computing Facility, Oak Ridge National Laboratory (U.S.) Researchers at ORNL have used the Titan supercomputer to perform the first simulations of organic solar cell active layers at scales commensurate with actual devices. By modifying the LAMMPS molecular dynamics software to use GPU acceleration on Titan, the researchers were able to perform simulations to study how different polymer blends can be used to alter the device morphology. The new insights will aid in the rational design of cheap solar cells with higher efficiency. Results are published in the journal Physical Chemistry Chemical PhysicsLead: W. Michael Brown and Jack C. Wells
  • Ford Werke GmbH (Germany) Researchers at Ford Werke GmbH have developed and deployed a new CAE process, which enables the optimization of the airflow through the cooling package of a vehicle using complex 3D CFD analysis. The Ford team also demonstrated it could run these complex simulations fast enough to enable their use within the time constraints of a vehicle development project. The team’s work on Jaguar at Oak Ridge National Lab will help Ford maximize the effectiveness and fuel efficiency of engine bay designs throughout the company. Lead: Dr. Burkhard Hupertz and Alex Akkerman

IDC welcomes award entries from anywhere in the world. Entries may be submitted at any time by completing the brief form available at https://www.hpcuserforum.com/innovationaward/. New winners will be announced multiple times each year. Submissions must contain a clear description of the dollar value or scientific value received in order to qualify. The HPC User Forum Steering Committee performs an initial ranking of the submissions, after which domain and vertical experts are called on, as needed, to evaluate the submissions.

HPC Innovation Excellence Award sponsors include Adaptive Computing, Altair, AMD, Ansys, Cray, Avetec/DICE, the Boeing Company, the Council on Competitiveness, Department of Defense, Department of Energy, Ford Motor Company, Hewlett Packard, HPCwire, insideHPC, Intel, Microsoft, National Science Foundation, NCSA, Platform Computing, Scientific Computing, and SGI.

The next round of HPC Innovation Excellence Award winners will be announced at ISC’14 in June 2014.

About IDC

International Data Corporation (IDC) is the premier global provider of market intelligence, advisory services, and events for the information technology, telecommunications, and consumer technology markets. IDC helps IT professionals, business executives, and the investment community to make fact-based decisions on technology purchases and business strategy. More than 1,000 IDC analysts provide global, regional, and local expertise on technology and industry opportunities and trends in over 110 countries. For more than 49 years, IDC has provided strategic insights to help our clients achieve their key business objectives. IDC is a subsidiary of IDG, the world’s leading technology media, research, and events company. You can learn more about IDC by visiting www.idc.com.

—–

Source: IDC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This