IIT Professor Establishes New Mathematical Model for Reducing Data Access Delay

March 11, 2014

CHICAGO, Ill., March 11 — As the amount of data grows ever larger but memory speed continues to greatly lag CPU speed, Xian-He Sun, Distinguished Professor of Computer Science at Illinois Institute of Technology and creator of Sun-Ni’s law—one of three scalable computing laws along with Amdahl’s law and Gustafson’s law—has established a new mathematical model for reducing data access delay.

Called “Concurrent Average Memory Access Time (C-AMAT),” it promises to cut the penalty associated with accessing data and increase speed by up to 100 times through parallel memory access, which in turn will create a “break” in  the memory-wall problem. A paper on C-AMAT is forthcoming in the Institute of Electrical and Electronics Engineers (IEEE) Computer Society’s Computer magazine and can be viewed at http://www.computer.org/csdl/mags/co/preprint/06560068-abs.html.

“There’s no question the primary limits on computing performance—from mobile phones to supercomputers—are the costs associated with data movement,” said Andrew A. Chien, the William Eckhardt Professor in Computer Science and Senior Fellow in the Computation Institute at the University of Chicago, and Senior Computer Scientist at the Argonne National Laboratory.  Before moving to University of Chicago, Chien was vice president of research at Intel Corporation.

“Dr. Sun’s work attacks the critical problem of understanding and modeling data movement costs and systems performance and thus may enable better performing software (today) and improved hardware designs in the future.”

During the last four decades, CPU speed increase has been following Moore’s law, increasing 52 percent per year and doubling every 18 months. But memory speed is only increasing nine percent per year, and disk speed is even more behind, increasing an average of only six percent per year. Memory speed currently is about 400 times slower than CPU speed. That forms a wall for data movement and processing.

The data tsunami compounded with the memory-wall problem makes data management the primary concern of computing systems today, in terms of both performance and energy consumption. Computer science researchers increasingly are facing the need to rethink the design of computing systems from the conventional computing-centric view to a data-centric view.

While scientists search for solutions, they have found the value of the memory-bounded speedup model, or Sun-Ni’s law, established by Xian-He Sun and Lionel Ni in 1990. In 1989, Intel developed the first processor with on-chip caches in response to the memory-wall problem. Cache is a small but fast special hardware device to hold data temporarily and make it more easily accessible.

In response, Sun and Ni introduced the memory-bounded formulation stating that the computing speed will be bounded by the on-chip memory or on-chip cache. A quantitative mathematical memory-bound function is presented for the tradeoff between memory, computing, and the effectiveness of the algorithm design in utilizing the cache architecture. Sun-Ni’s law was introduced in advanced computer architecture textbooks in the 1990, and widely used in memory-bound-concerned algorithm design in the 2000s. In the 2010s, with the emergence of the big data problem, Sun-Ni’s law appeared in popular magazines such as PC Magazine.

Sun’s recent work on C-AMAT is the first formal mathematical model to promote and evaluate the concept of parallel memory for reducing data access delay via explicit parallel data access.

C-AMAT is a vital tool to mitigate the memory-wall effect and to improve memory system performance. There are only a handful fundamental formulas in computing architecture and algorithm design. AMAT is one of them. AMAT states that if the desired data is in cache (hit), then you get the data quickly; otherwise (miss), you get a cache miss penalty. Due to the memory-wall problem, the miss penalty will be big. So architecture and algorithm design focuses on reducing cache misses. With C-AMAT and parallel memory access, however, depending on if there is a hit occurring at the same time, a miss may or may not have a penalty. C-AMAT would change the focus of architecture and algorithm design from reducing cache misses to increasing data access parallelism. It provides a formulation to evaluate the effectiveness of the concurrency of each memory layer toward the final performance of parallel data access.

“The most profound research is not the design of the fastest algorithm for a given problem; it is revealing a fundamental computing property so hundreds or even thousands of algorithms can be developed upon it,” Sun said.

Sun has been working on memory access issues for 20 years. During this period, his research has been continuously supported by the National Science Foundation (NSF) and other government agencies.

Sun’s research is both application-driven and technology-driven. For the former, he and his research group have developed a series of software systems. These include the software packages of IOSIG: I/O Signatures Based Data Access Optimization, PFS-IOC: Server-side I/O-Coordination in Parallel File System, GHS: Grid Harvest Service, and Network Bandwidth Predictor (NBP), etc. For the latter, his contributions include the abovementioned Sun-Ni Law (1990), C-AMAT (2013), the algorithm-machine combination scalability, the general speed-up metric, an extended Amdahl’s law for multicore systems, and the memory Access Per Cycle (APC) performance metric, for measure memory parallelism (2011).

Sun is an IEEE Fellow for his contributions to memory-bounded performance metrics and scalable parallel computing, and a senior member of the Association for Computing Machinery (ACM). He has been the chair of the Department of Computer Science at IIT since fall 2009.

Founded in 1890, IIT is a Ph.D.-granting university offering degrees in engineering, sciences, architecture, psychology, design, humanities, business, and law. IIT’s interprofessional, technology-focused curriculum is designed to advance knowledge through research and scholarship, to cultivate invention improving the human condition, and to prepare students from throughout the world for a life of professional achievement, service to society, and individual fulfillment. Visit www.iit.edu.

—–

Source: Illinois Institute of Technology

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Idaho National Laboratory Set for $90M Cybersec/HPC Expansion

March 30, 2017

Idaho lawmakers this week approved a $90 million bond to fund the construction of two new Idaho National Laboratory buildings: the Cybercore Integration Center and the Collaborative Computing Center. Read more…

By Tiffany Trader

Ohio Supercomputer Center Dedicates ‘Owens’ Cluster

March 29, 2017

In a dedication ceremony held earlier today (March 29), officials from Ohio Supercomputer Center (OSC) along with state representatives gathered to celebrate the launch of OSC’s newest cluster: Read more…

By Tiffany Trader

EU Ratchets up the Race to Exascale Computing

March 29, 2017

The race to expand HPC infrastructure, including exascale machines, to advance national and regional interests ratcheted up a notch yesterday with announcement that seven European countries – Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This