IIT Professor Establishes New Mathematical Model for Reducing Data Access Delay

March 11, 2014

CHICAGO, Ill., March 11 — As the amount of data grows ever larger but memory speed continues to greatly lag CPU speed, Xian-He Sun, Distinguished Professor of Computer Science at Illinois Institute of Technology and creator of Sun-Ni’s law—one of three scalable computing laws along with Amdahl’s law and Gustafson’s law—has established a new mathematical model for reducing data access delay.

Called “Concurrent Average Memory Access Time (C-AMAT),” it promises to cut the penalty associated with accessing data and increase speed by up to 100 times through parallel memory access, which in turn will create a “break” in  the memory-wall problem. A paper on C-AMAT is forthcoming in the Institute of Electrical and Electronics Engineers (IEEE) Computer Society’s Computer magazine and can be viewed at http://www.computer.org/csdl/mags/co/preprint/06560068-abs.html.

“There’s no question the primary limits on computing performance—from mobile phones to supercomputers—are the costs associated with data movement,” said Andrew A. Chien, the William Eckhardt Professor in Computer Science and Senior Fellow in the Computation Institute at the University of Chicago, and Senior Computer Scientist at the Argonne National Laboratory.  Before moving to University of Chicago, Chien was vice president of research at Intel Corporation.

“Dr. Sun’s work attacks the critical problem of understanding and modeling data movement costs and systems performance and thus may enable better performing software (today) and improved hardware designs in the future.”

During the last four decades, CPU speed increase has been following Moore’s law, increasing 52 percent per year and doubling every 18 months. But memory speed is only increasing nine percent per year, and disk speed is even more behind, increasing an average of only six percent per year. Memory speed currently is about 400 times slower than CPU speed. That forms a wall for data movement and processing.

The data tsunami compounded with the memory-wall problem makes data management the primary concern of computing systems today, in terms of both performance and energy consumption. Computer science researchers increasingly are facing the need to rethink the design of computing systems from the conventional computing-centric view to a data-centric view.

While scientists search for solutions, they have found the value of the memory-bounded speedup model, or Sun-Ni’s law, established by Xian-He Sun and Lionel Ni in 1990. In 1989, Intel developed the first processor with on-chip caches in response to the memory-wall problem. Cache is a small but fast special hardware device to hold data temporarily and make it more easily accessible.

In response, Sun and Ni introduced the memory-bounded formulation stating that the computing speed will be bounded by the on-chip memory or on-chip cache. A quantitative mathematical memory-bound function is presented for the tradeoff between memory, computing, and the effectiveness of the algorithm design in utilizing the cache architecture. Sun-Ni’s law was introduced in advanced computer architecture textbooks in the 1990, and widely used in memory-bound-concerned algorithm design in the 2000s. In the 2010s, with the emergence of the big data problem, Sun-Ni’s law appeared in popular magazines such as PC Magazine.

Sun’s recent work on C-AMAT is the first formal mathematical model to promote and evaluate the concept of parallel memory for reducing data access delay via explicit parallel data access.

C-AMAT is a vital tool to mitigate the memory-wall effect and to improve memory system performance. There are only a handful fundamental formulas in computing architecture and algorithm design. AMAT is one of them. AMAT states that if the desired data is in cache (hit), then you get the data quickly; otherwise (miss), you get a cache miss penalty. Due to the memory-wall problem, the miss penalty will be big. So architecture and algorithm design focuses on reducing cache misses. With C-AMAT and parallel memory access, however, depending on if there is a hit occurring at the same time, a miss may or may not have a penalty. C-AMAT would change the focus of architecture and algorithm design from reducing cache misses to increasing data access parallelism. It provides a formulation to evaluate the effectiveness of the concurrency of each memory layer toward the final performance of parallel data access.

“The most profound research is not the design of the fastest algorithm for a given problem; it is revealing a fundamental computing property so hundreds or even thousands of algorithms can be developed upon it,” Sun said.

Sun has been working on memory access issues for 20 years. During this period, his research has been continuously supported by the National Science Foundation (NSF) and other government agencies.

Sun’s research is both application-driven and technology-driven. For the former, he and his research group have developed a series of software systems. These include the software packages of IOSIG: I/O Signatures Based Data Access Optimization, PFS-IOC: Server-side I/O-Coordination in Parallel File System, GHS: Grid Harvest Service, and Network Bandwidth Predictor (NBP), etc. For the latter, his contributions include the abovementioned Sun-Ni Law (1990), C-AMAT (2013), the algorithm-machine combination scalability, the general speed-up metric, an extended Amdahl’s law for multicore systems, and the memory Access Per Cycle (APC) performance metric, for measure memory parallelism (2011).

Sun is an IEEE Fellow for his contributions to memory-bounded performance metrics and scalable parallel computing, and a senior member of the Association for Computing Machinery (ACM). He has been the chair of the Department of Computer Science at IIT since fall 2009.

Founded in 1890, IIT is a Ph.D.-granting university offering degrees in engineering, sciences, architecture, psychology, design, humanities, business, and law. IIT’s interprofessional, technology-focused curriculum is designed to advance knowledge through research and scholarship, to cultivate invention improving the human condition, and to prepare students from throughout the world for a life of professional achievement, service to society, and individual fulfillment. Visit www.iit.edu.

—–

Source: Illinois Institute of Technology

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This