IIT Professor Establishes New Mathematical Model for Reducing Data Access Delay

March 11, 2014

CHICAGO, Ill., March 11 — As the amount of data grows ever larger but memory speed continues to greatly lag CPU speed, Xian-He Sun, Distinguished Professor of Computer Science at Illinois Institute of Technology and creator of Sun-Ni’s law—one of three scalable computing laws along with Amdahl’s law and Gustafson’s law—has established a new mathematical model for reducing data access delay.

Called “Concurrent Average Memory Access Time (C-AMAT),” it promises to cut the penalty associated with accessing data and increase speed by up to 100 times through parallel memory access, which in turn will create a “break” in  the memory-wall problem. A paper on C-AMAT is forthcoming in the Institute of Electrical and Electronics Engineers (IEEE) Computer Society’s Computer magazine and can be viewed at http://www.computer.org/csdl/mags/co/preprint/06560068-abs.html.

“There’s no question the primary limits on computing performance—from mobile phones to supercomputers—are the costs associated with data movement,” said Andrew A. Chien, the William Eckhardt Professor in Computer Science and Senior Fellow in the Computation Institute at the University of Chicago, and Senior Computer Scientist at the Argonne National Laboratory.  Before moving to University of Chicago, Chien was vice president of research at Intel Corporation.

“Dr. Sun’s work attacks the critical problem of understanding and modeling data movement costs and systems performance and thus may enable better performing software (today) and improved hardware designs in the future.”

During the last four decades, CPU speed increase has been following Moore’s law, increasing 52 percent per year and doubling every 18 months. But memory speed is only increasing nine percent per year, and disk speed is even more behind, increasing an average of only six percent per year. Memory speed currently is about 400 times slower than CPU speed. That forms a wall for data movement and processing.

The data tsunami compounded with the memory-wall problem makes data management the primary concern of computing systems today, in terms of both performance and energy consumption. Computer science researchers increasingly are facing the need to rethink the design of computing systems from the conventional computing-centric view to a data-centric view.

While scientists search for solutions, they have found the value of the memory-bounded speedup model, or Sun-Ni’s law, established by Xian-He Sun and Lionel Ni in 1990. In 1989, Intel developed the first processor with on-chip caches in response to the memory-wall problem. Cache is a small but fast special hardware device to hold data temporarily and make it more easily accessible.

In response, Sun and Ni introduced the memory-bounded formulation stating that the computing speed will be bounded by the on-chip memory or on-chip cache. A quantitative mathematical memory-bound function is presented for the tradeoff between memory, computing, and the effectiveness of the algorithm design in utilizing the cache architecture. Sun-Ni’s law was introduced in advanced computer architecture textbooks in the 1990, and widely used in memory-bound-concerned algorithm design in the 2000s. In the 2010s, with the emergence of the big data problem, Sun-Ni’s law appeared in popular magazines such as PC Magazine.

Sun’s recent work on C-AMAT is the first formal mathematical model to promote and evaluate the concept of parallel memory for reducing data access delay via explicit parallel data access.

C-AMAT is a vital tool to mitigate the memory-wall effect and to improve memory system performance. There are only a handful fundamental formulas in computing architecture and algorithm design. AMAT is one of them. AMAT states that if the desired data is in cache (hit), then you get the data quickly; otherwise (miss), you get a cache miss penalty. Due to the memory-wall problem, the miss penalty will be big. So architecture and algorithm design focuses on reducing cache misses. With C-AMAT and parallel memory access, however, depending on if there is a hit occurring at the same time, a miss may or may not have a penalty. C-AMAT would change the focus of architecture and algorithm design from reducing cache misses to increasing data access parallelism. It provides a formulation to evaluate the effectiveness of the concurrency of each memory layer toward the final performance of parallel data access.

“The most profound research is not the design of the fastest algorithm for a given problem; it is revealing a fundamental computing property so hundreds or even thousands of algorithms can be developed upon it,” Sun said.

Sun has been working on memory access issues for 20 years. During this period, his research has been continuously supported by the National Science Foundation (NSF) and other government agencies.

Sun’s research is both application-driven and technology-driven. For the former, he and his research group have developed a series of software systems. These include the software packages of IOSIG: I/O Signatures Based Data Access Optimization, PFS-IOC: Server-side I/O-Coordination in Parallel File System, GHS: Grid Harvest Service, and Network Bandwidth Predictor (NBP), etc. For the latter, his contributions include the abovementioned Sun-Ni Law (1990), C-AMAT (2013), the algorithm-machine combination scalability, the general speed-up metric, an extended Amdahl’s law for multicore systems, and the memory Access Per Cycle (APC) performance metric, for measure memory parallelism (2011).

Sun is an IEEE Fellow for his contributions to memory-bounded performance metrics and scalable parallel computing, and a senior member of the Association for Computing Machinery (ACM). He has been the chair of the Department of Computer Science at IIT since fall 2009.

Founded in 1890, IIT is a Ph.D.-granting university offering degrees in engineering, sciences, architecture, psychology, design, humanities, business, and law. IIT’s interprofessional, technology-focused curriculum is designed to advance knowledge through research and scholarship, to cultivate invention improving the human condition, and to prepare students from throughout the world for a life of professional achievement, service to society, and individual fulfillment. Visit www.iit.edu.

—–

Source: Illinois Institute of Technology

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HPE to provide the DoD High Performance Computing Modernizatio Read more…

By Tiffany Trader

Topological Quantum Superconductor Progress Reported

February 20, 2018

Overcoming sensitivity to decoherence is a persistent stumbling block in efforts to build effective quantum computers. Now, a group of researchers from Chalmers University of Technology (Sweden) report progress in devisi Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This