ImmunityBio Combines Supercomputing Power With Microsoft Azure to Target Infection ‘Doorway’ of the Coronavirus

April 1, 2020

EL SEGUNDO, Calif., April 1, 2020 — ImmunityBio, Inc., a privately held immunotherapy company within the NantWorks ecosystem of companies, announced it is collaborating with Microsoft to leverage the company’s Azure platform to perform a highly detailed computational analysis of the spike protein structure of the SARS-CoV-2, the novel coronavirus responsible for the global pandemic. The spike protein serves as the “doorway” for the virus to enter human cells, making it a high-priority target for a vaccine or antibody therapies to fight the virus.

A digital blueprint of the spike protein obtained via a process called cryo-electron microscopy was published in February by researchers at the University of Texas and the National Institutes of Health. The ImmunityBio and Microsoft teams have taken that one step further by applying a technique called molecular dynamics to the blueprint. Molecular dynamics analyzes the physical movements of the virus components at the atomic level over an extended period of time and runs a series of computationally intensive simulations that result in a detailed model of the most likely solution structure of the spike protein.

Having a detailed model of the spike protein complex is crucial for researchers seeking to develop effective vaccines or therapies. The protein is the key to the mechanism the virus uses to invade cells in the body and cause an infection. The spike protein, so called because it protrudes from the surface of the viral particle, binds to the ACE2 receptor on the surface of an epithelial cell in the human respiratory tract. Once it has done so, the genetic material from the virus is able to enter the cell and commandeer its function so the cell produces copies of the virus in large numbers.

The human immune system normally attempts to fight these infections by creating antibodies that recognize the protein, specifically neutralize it and thus keep the cellular “doorway” closed. Because the SARS-CoV-2 virus is novel – that is, not seen previously in humans – the immune system in most people is unable to develop antibody resistance rapidly enough to keep ahead of the infection.

Both ImmunityBio and Microsoft donated their massive networked computing power and advanced algorithms needed to derive the model in days, rather than the months it would normally require using older technical approaches. With this model in hand, researchers working on vaccines and treatments have a clear therapeutic target that will streamline their work in finding ways to treat the pandemic.

“The preclinical process of finding and selecting a target for a traditional therapy can take years, which we don’t have in our fight against the coronavirus,” said Dr. Patrick Soon-Shiong, Chairman and CEO of ImmunityBio, Inc. “Across our portfolio of biotech companies, including ImmunityBio and NantKwest, we are committed to helping find effective therapeutics for coronavirus and other infectious diseases. Association of the COVID-19 spike protein with host ACE-2 surface proteins is a crucial step in infection. Structures of this complex are available, but understanding how the two proteins dynamically interact is critical to targeting it. This gives us valuable information about how COVID-19 binds to lung cells and what drives the association. The involvement of Microsoft and its abundant computing infrastructure will bolster our drug discovery and development progress by our computer scientists and molecular modelers towards entering an optimal therapeutic candidate in clinical trials this year.”

“Microsoft is committed to bring our technology and expertise to bear in solving the complex computing problem of modeling this protein,” said Peter Lee, Corporate Vice President, Microsoft AI & Research. “With ImmunityBio we are working to speed the effort to find a treatment for this deadly virus that has affected every part of the globe.”

Microsoft, collaborating with ImmunityBio’s engineers and scientists, quickly deployed a High Performance Compute cluster on Microsoft Azure cloud services. The cluster contains over 1,250 NVIDIA V100 Tensor Core high performance graphics processing units (GPUs) specifically designed for machine learning and other computationally intensive applications. Similarly, ImmunityBio has deployed its 320 GPU cluster, which has always been optimized for and dedicated to molecular modeling of proteins, antibodies, antivirals, and targeted small molecule drugs.

“Our joint efforts between Microsoft and ImmunityBio bring together an incredible amount of computing power to help create models for researchers working on vaccines and therapeutics,” said Dr. James Weinstein, Senior Vice President, Microsoft Healthcare. “We are pleased to support ImmunityBio and NantWorks to jointly find a path to end this pandemic.”

In 2011, Dr. Soon-Shiong and his team assumed control of the National LambdaRail, a 12,000-mile-long, high-speed national computer network that was used by the U.S. research and education communities and NASA to establish a federated super-computing cloud. Soon-Shiong has since expanded this cloud infrastructure to undertake molecular modeling of protein-to-protein docking and high affinity binding dynamics and he and the NANT team have successfully identified unique binding sites in important cancer-related proteins such as KRAS and Neoepitopes.

“With the advent of this pandemic, we have allocated our computing resources and our scientific skill sets to model the dynamics of the spike protein and its interaction with ACE 2. We are extremely grateful to Dr. Lee, Dr. Weinstein and their teams at Microsoft in supporting our efforts to discover novel binding sites to fight this war,” added Dr. Soon-Shiong.

About ImmunityBio

ImmunityBio, Inc. is a privately held immunotherapy company with a broad portfolio of biological molecules at clinical stages of development. The Company’s goals are to employ this portfolio to activate endogenous Natural Killer (NK) and CD8+ T cells in the fields of cancer and infectious disease. Specifically, in regards to cancer, ImmunityBio’s goal is to develop a memory T-cell cancer vaccine to combat multiple tumor types—without the use of high-dose chemotherapy. Regarding infectious disease, the Company is addressing HIV, influenza, and the coronavirus.


Source: ImmunityBio, Inc. 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire