Intel Announces MLPerf Results for Habana Gaudi2

June 29, 2022

June 29, 2022 — Intel today announced that its second-generation Habana Gaudi2 deep learning processors have outperformed Nvidia’s A100 submission for AI time-to-train on the MLPerf industry benchmark. The results highlight leading training times on vision (ResNet-50) and language (BERT) models with the Gaudi2 processor, which was unveiled in May at the Intel Vision event.

A photo shows the Habana Gaudi2 Mezzanine Card. On May 10, 2022, Habana Labs, Intel’s data center team focused on AI deep learning processor technologies, launched its second-generation deep learning processors for training and inference: Habana Gaudi2 and Habana Greco. Credit: Intel Corporation

“I’m excited about delivering the outstanding MLPerf results with Gaudi 2 and proud of our team’s achievement to do so just one month after launch. Delivering best-in-class performance in both vision and language models will bring value to customers and help accelerate their AI deep learning solutions,” said Sandra Rivera, Intel executive vice president and general manager of the Datacenter and AI Group.

With the Gaudi platform from Habana Labs, Intel’s data center team focused on deep learning processor technologies, enables data scientists and machine learning engineers to accelerate training and build new or migrate existing models with just a few lines of code to enjoy greater productivity, as well as lower operational costs.

What It Shows

Gaudi2 delivers dramatic advancements in time-to-train (TTT) over first-generation Gaudi and enabled Habana’s May 2022 MLPerf submission to outperform Nvidia’s A100-80G for eight accelerators on vision and language models. For ResNet-50, Gaudi2 delivers a 36% reduction in time-to-train as compared to Nvidia’s TTT for A100-80GB and a 45% reduction compared to an A100-40GB 8-accelerator server submission by Dell for both ResNet-50 and BERT.

Compared to first-generation Gaudi, Gaudi2 achieves a 3x speed-up in training throughput for ResNet-50 and 4.7x for BERT. These advances can be attributed to the transition to 7-nanometer process from 16 nm, tripling the number of Tensor Processor Cores, increasing the GEMM engine compute capacity, tripling the in-package high bandwidth memory capacity, increasing bandwidth and doubling the SRAM size. For vision models, Gaudi2 has a new feature in the form of an integrated media engine, which operates independently and can handle the entire pre-processing pipe for compressed imaging, including data augmentation required for AI training.

About Out-of-the-Box Customer Performance

The performance of both generations of Gaudi processors is achieved without special software manipulations that differ from the out-of-the-box commercial software stack available to Habana customers.

Comparing out-of-the-box performance attained with commercially available software, the following measurements were produced by Habana on a common 8-GPU server versus the HLS-Gaudi2 reference server. Training throughput was derived with TensorFlow dockers from NGC and from Habana public repositories, employing best parameters for performance as recommended by the vendors (mixed precision used in both). The training time throughput is a key factor affecting the resulting training time convergence:

In addition to Gaudi2 achievements noted in MLPerf, the first-generation Gaudi delivered strong performance and impressive near-linear scale on ResNet for 128-accelerator and 256-accelerator Gaudi submissions that support high-efficiency system scaling for customers.

“Gaudi2 delivers clear leadership training performance as proven by our latest MLPerf results,” said Eitan Medina, chief operating officer at Habana Labs. “And we continue to innovate on our deep-learning training architecture and software to deliver the most cost-competitive AI training solutions.”

About MLPerf Benchmarks

The MLPerf community aims to design fair and useful benchmarks that provide “consistent measurements of accuracy, speed, and efficiency” for machine learning solutions. They were created by AI leaders from academia, research labs and the industry who decided on benchmarks and defined a set of strict rules that ensure a fair comparison between all vendors. The MLPerf benchmark is the only reliable benchmark for the AI industry due to its explicit set of rules, which enable fair comparison on end-to-end tasks. Additionally, MLPerf submissions go through a monthlong peer review process, which further validates the reported results.

The Small Print

Test configuration for ResNet-50 Performance Comparison

A100-80GB: Measured in April 2022 by Habana on Azure instance Standard_ND96amsr_A100_v4 using single A100-80GB using TF docker 22.03-tf2-py3 from NGC (optimizer=sgd, BS=256)
A100-40GB: Measured in April 2022 by Habana on DGX-A100 using single A100-40GB using TF docker 22.03-tf2-py3 from NGC (optimizer=sgd, BS=256)
V100-32GB¬: Measured in April 2022 by Habana on p3dn.24xlarge using single V100-32GB using TF docker 22.03-tf2-py3 from NGC  (optimizer=sgd, BS=256)
Gaudi2: Measured in May 2022 by Habana on Gaudi2-HLS system using single Gaudi2 using SynapseAI TF docker 1.5.0 (BS=256)
Results may vary.

Test configuration for BERT Performance Comparison

A100-80GB: Measured in April 2022 by Habana on Azure instance Standard_ND96amsr_A100_v4 using single A100-80GB with TF docker 22.03-tf2-py3 from NGC (Phase-1: Seq len=128, BS=312, accu steps=256; Phase-2: seq len=512, BS=40, accu steps=768)
A100-40GB: Measured in April 2022 by Habana on DGX-A100 using single A100-40GB with TF docker 22.03-tf2-py3 from NGC (Phase-1: Seq len=128, BS=64,
accu steps=1024; Phase-2: seq len=512, BS=16, accu steps=2048)
V100-32GB: Measured in April 2022 by Habana on p3dn.24xlarge using single V100-32GB with TF docker 21.12-tf2-py3 from NGC  (Phase-1: Seq len=128, BS=64, accu steps=1024; Phase-2: seq len=512, BS=8, accu steps=4096)
Gaudi2: Measured in May 2022 by Habana on Gaudi2-HLS system using single Gaudi2 with SynapseAI TF docker 1.5.0 (Phase-1: Seq len=128, BS=64, accu steps=1024; Phase-2: seq len=512, BS=16, accu steps=2048)
Results may vary.

About Intel

Intel (Nasdaq: INTC) is an industry leader, creating world-changing technology that enables global progress and enriches lives. Inspired by Moore’s Law, we continuously work to advance the design and manufacturing of semiconductors to help address our customers’ greatest challenges. By embedding intelligence in the cloud, network, edge and every kind of computing device, we unleash the potential of data to transform business and society for the better. To learn more about Intel’s innovations, go to newsroom.intel.com and intel.com.


Source: Intel

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Researchers Propose New Solution to Quantum Internet Transmission Problem

July 22, 2024

Getting intact qubits from here-to-there is the basic challenge for any quantum internet scheme. Now, scientists from the University of Chicago, Stanford University, and California Institute of Technology have introduced Read more…

Can Cerabyte Crack the $1-Per-Petabyte Barrier with Ceramic Storage?

July 20, 2024

A German startup named Cerabyte is hoping to solve the burgeoning market for secondary and archival data storage with a novel approach that uses lasers to etch bits onto glass with a ceramic coating. The “grey ceramic� Read more…

Weekly Wire Roundup: July 15-July 19, 2024

July 19, 2024

It's summertime (for most of us), and the HPC-related headlines aren't as plentiful as they once were. But not everything has to happen at high tide-- this week still had some waves! Idaho National Laboratory's Bitter Read more…

ARM, Fujitsu Targeting Open-source Software for Power Efficiency in 2-nm Chip

July 19, 2024

Fujitsu and ARM are relying on open-source software to bring power efficiency to an air-cooled supercomputing chip that will ship in 2027. Monaka chip, which will be made using the 2-nanometer process, is based on the Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI projects.). Other tools have joined the CUDA castle siege. AMD Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was recently posted by CERN’s department of experimental physi Read more…

Researchers Propose New Solution to Quantum Internet Transmission Problem

July 22, 2024

Getting intact qubits from here-to-there is the basic challenge for any quantum internet scheme. Now, scientists from the University of Chicago, Stanford Univer Read more…

Can Cerabyte Crack the $1-Per-Petabyte Barrier with Ceramic Storage?

July 20, 2024

A German startup named Cerabyte is hoping to solve the burgeoning market for secondary and archival data storage with a novel approach that uses lasers to etch Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI pro Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire