Intel Launches Integrated Photonics Research Center

December 8, 2021

Dec. 8, 2021 — Intel Labs recently opened the Intel Research Center for Integrated Photonics for Data Center Interconnects. The center’s mission is to accelerate optical input/output (I/O) technology innovation in performance scaling and integration with a specific focus on photonics technology and devices, CMOS circuits and link architecture, and package integration and fiber coupling.

“At Intel Labs, we’re strong believers that no one organization can successfully turn all the requisite innovations into research reality. By collaborating with some of the top scientific minds from across the United States, Intel is opening the doors for the advancement of integrated photonics for the next generation of compute interconnect. We look forward to working closely with these researchers to explore how we can overcome impending performance barriers,”said James Jaussi, Senior Principal Engineer and Director of the PHY Research Lab in Intel Labs.

The ever-increasing movement of data from server to server is taxing the capabilities of today’s network infrastructure. The industry is quickly approaching the practical limits of electrical I/O performance. As demand continues to increase, electrical I/O power-performance scaling is not keeping pace and will soon limit available power for compute operations. This performance barrier can be overcome by integrating compute silicon and optical I/O, a key research center focus.

Intel has recently demonstrated progress in critical technology building blocks for integrated photonics. Light generation, amplification, detection, modulation, CMOS interface circuits and package integration are essential to achieve the required performance to replace electrical as the primary high-bandwidth off-package interface.

Additionally, optical I/O has the potential to dramatically outperform electrical in the key performance metrics of reach, bandwidth density, power consumption and latency. Further innovations are necessary on several fronts to extend optical performance while lowering power and cost.

About the Research Center

The Intel Research Center for Integrated Photonics for Data Center Interconnects brings together universities and world-renowned researchers to accelerate optical I/O technology innovation in performance scaling and integration. The research vision is to explore a technology scaling path that satisfies energy efficiency and bandwidth performance requirements for the next decade and beyond.

Intel understands that academia is at the heart of technological innovation and seeks to catalyze innovation in research at leading academic institutions worldwide. Today’s announcement reflects Intel’s ongoing commitment to collaborate with academia in developing new and advanced technologies that improve and further computing as we know it.

The researchers participating in the Research Center include:

  • John Bowers, University of California, Santa Barbara
    Project: Heterogeneously Integrated Quantum Dot Lasers on Silicon.
    Description: The UCSB team will investigate issues with integrating indium arsenide (InAs) quantum dot lasers with conventional silicon photonics. The goal of this project is to characterize expected performance and design parameters of single frequency and multiwavelength sources.
  • Pavan Kumar Hanumolu, University of Illinois, Urbana-Champaign
    Project: Low-power optical transceivers enabled by duo-binary signaling and baud-rate clock recovery.
    Description: This project will develop ultra-low-power, high-sensitivity optical receivers using novel trans-impedance amplifiers and baud-rate clock and data recovery architectures. The prototype optical transceivers will be implemented in a 22 nm CMOS process to demonstrate very high jitter tolerance and excellent energy efficiency.
  • Arka Majumdar, University of Washington
    Project: Nonvolatile reconfigurable optical switching network for high-bandwidth data communication.
    Description: The UW team will work on low-loss, nonvolatile electrically reconfigurable silicon photonic switches using emerging chalcogenide phase change materials. Unlike existing tunable mechanisms, the developed switch will hold its state, allowing zero static power consumption.
  • Samuel Palermo, Texas A&M University
    Project: Sub-150fJ/b optical transceivers for data center interconnects.
    Description: This project will develop energy-efficient optical transceiver circuits for a massively parallel, high-density and high-capacity photonic interconnect system. The goal is to improve energy efficiency by employing dynamic voltage frequency scaling in the transceivers, low-swing voltage-mode drivers, ultra-sensitive optical receivers with tight photodetector integration, and low-power optical device tuning loops.
  • Alan Wang, Oregon State University
    Project: 0.5V silicon microring modulators driven by high-mobility transparent conductive oxide.
    Description: This project seeks to develop a low driving voltage, high bandwidth silicon microring resonator modulator (MRM) through heterogeneous integration between the silicon MOS capacitor with high-mobility Ti:In2O3 The device promises to overcome the energy efficiency bottleneck of the optical transmitter and can be co-packaged in future optical I/O systems.
  • Ming Wu, University of California, Berkeley
    Project: Wafer-scale optical packaging of silicon photonics.
    Description: The UC Berkeley team will develop integrated waveguide lenses that have potential to enable non-contact optical packaging of fiber arrays with low loss and high tolerances.
  • S.J. Ben Yoo, University of California, Davis
    Project: Athermal and power-efficient scalable high-capacity silicon-photonic transceivers.
    Description: The UC Davis team will develop extremely power-efficient athermal silicon-photonic modulator and resonant photodetector photonic integrated circuits scaling to 40 Tb/s capacity at 150 fJ/b energy efficiency and 16 Tb/s/mm I/O density. To achieve this, the team will also develop a new 3D packaging technology for vertical integration of photonic and electronic integrated circuits with 10,000 pad-per-square-mm interconnect-pad-density.

About Intel

Intel is an industry leader, creating world-changing technology that enables global progress and enriches lives. Inspired by Moore’s Law, we continuously work to advance the design and manufacturing of semiconductors to help address our customers’ greatest challenges. By embedding intelligence in the cloud, network, edge and every kind of computing device, we unleash the potential of data to transform business and society for the better. To learn more about Intel’s innovations, go to newsroom.intel.com and intel.com.


Source: Intel

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire