Keeping Big Data Cool at SDSC

June 29, 2016

June 29 — When most people think of a supercomputer center, they may think of one massive computer performing a single task. Inside the data center at the San Diego Supercomputer Center (SDSC) at the University of California San Diego, however, there are several large supercomputer systems, each performing multiple tasks simultaneously across a wide range of science domains that include genome sequencing to help pave the way to personalized medical treatment, coming up with new drug designs for conditions such as Parkinson’s and Alzheimer’s disease, or creating detailed fluid dynamics simulations for hypersonic aircraft.

Keeping SDSC’s main data center cool enough so that its Comet and Gordon supercomputers, among smaller clusters, don’t overheat is a complex yet mission-critical task, according to Todor Milkov, SDSC’s senior project engineer. A computing architecture such as the one found in Comet, SDSC’s newest supercomputer, requires one megawatt of power to operate the system. Using that much electricity generates a tremendous amount of heat, so SDSC, with the help of outside experts, developed three cooling system prototypes and conducted research to determine the most efficient system.

Each prototype system was designed using vendor-specific technology controlling five air handlers as a baseline to evaluate system performance. One of the prototypes used wireless temperature sensors that read the temperature of the hot and cold aisles every three minutes to increase battery life.

SDSC Datacenter AisleMany data centers use a standard hot aisle/cold aisle design. This design involves lining up server racks in alternating rows, with cold air intakes facing one way and hot air exhausts facing the other. The rows composed of rack fronts are called cold aisles. Typically, cold aisles face air conditioner output ducts. The rows that the heated exhausts pour into are called hot aisles. Typically, hot aisles face air conditioner return ducts.

Containment systems can help isolate hot aisles and cold aisles from each other and prevent hot and cold air from mixing. Such systems started out as using physical barriers that simply separated the hot and cold aisles with vinyl plastic sheeting or Plexiglas covers. Modern containment systems offer plenums and other commercial options that combine containment with variable fan drives (VFDs) to prevent cold air and hot air from mixing.

At SDSC, however, the entire area under the raised floor is used for the supply plenum, and the entire area above the ceiling is for the return plenum. Cold aisles use perforated floor tiles with specifically designed hole sizes to control the air flow volume from the space below the floor, while the hot aisles use ceiling grates that allow heated air to enter the space above the ceiling.

Controlling the air flow from all air handlers discharging into one common plenum presents a difficult problem, especially since these spaces also contain obstructions such as pipes and conduits. Moreover, not all of the compute clusters run at full capacity at any given time, and systems loads also change regularly as research projects start up or stop. These constantly changing factors cause the amount of heat dissipated from the supercomputer systems to fluctuate from minute to minute. The data center cooling system has to quickly adjust to accommodate these fluctuations in temperature.

“We learned a lot during the prototype and research phase of the cooling system design,” said Milkov. “We started by collecting a lot of data on how air flowed through the data center. We found that three minutes between temperature readings was too long an interval to keep the data center within the desired temperature ranges. Because of the longer interval, we used more electricity bringing the data center back to its temperature set points than we needed if we took temperature readings over shorter intervals and could make changes to the cooling system sooner.”

Realizing that a different approach was needed, Milkov put together a vendor evaluation process for an updated data center management system with the objective of reducing energy use while increasing the level of control capability available to the SDSC operations staff.

After extensive research, Milkov selected three companies for prototype installations. At the conclusion of a detailed evaluation, systems integration company Earth Base One (EBO) Corporation and a SNAP PAC-based control system were chosen for providing extensive control capabilities and energy savings.

Milkov and Michael Hyde, EBO’s president, approached the project with the same vision. “Rather than adapting an off-the-shelf data center management system to SDSC, we designed a tailor-built system for SDSC’s unique challenges,” said Hyde.

Opto 22, which develops and manufactures hardware and software products for applications in industrial automation, remote monitoring, and data acquisition, was chosen as the primary controls manufacturer. “The Opto 22 hardware and software not only won the competition for control and energy savings, but was also the least expensive vendor solution,” said Hyde. “The software’s excellent historical data collection and trending abilities allowed SDSC engineers to continue improving the system based on real data.”

“We appreciated the outstanding technical support SDSC received from Opto 22 during our design and prototype phase,” said Milkov. “When you’re trying to protect millions of dollars’ worth of research, you need a control system you can rely on.”

The full case study is available here.

About SDSC

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s Comet joins the Center’s data-intensive Gordon cluster, and are both part of the National Science Foundation’s XSEDE (eXtreme Science and Engineering Discovery Environment) program, the most advanced collection of integrated digital resources and services in the world.

About Opto 22

Opto 22 develops and manufactures hardware and software products for applications in industrial automation, remote monitoring, and data acquisition. Using standard, commercially available Internet, networking, and computer technologies, Opto 22’s input/output and control systems allow customers to monitor, control, and acquire data from all of the mechanical, electrical, and electronic assets that are key to their business operations. More information is at www.opto22.com.


Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire