Keeping Big Data Cool at SDSC

June 29, 2016

June 29 — When most people think of a supercomputer center, they may think of one massive computer performing a single task. Inside the data center at the San Diego Supercomputer Center (SDSC) at the University of California San Diego, however, there are several large supercomputer systems, each performing multiple tasks simultaneously across a wide range of science domains that include genome sequencing to help pave the way to personalized medical treatment, coming up with new drug designs for conditions such as Parkinson’s and Alzheimer’s disease, or creating detailed fluid dynamics simulations for hypersonic aircraft.

Keeping SDSC’s main data center cool enough so that its Comet and Gordon supercomputers, among smaller clusters, don’t overheat is a complex yet mission-critical task, according to Todor Milkov, SDSC’s senior project engineer. A computing architecture such as the one found in Comet, SDSC’s newest supercomputer, requires one megawatt of power to operate the system. Using that much electricity generates a tremendous amount of heat, so SDSC, with the help of outside experts, developed three cooling system prototypes and conducted research to determine the most efficient system.

Each prototype system was designed using vendor-specific technology controlling five air handlers as a baseline to evaluate system performance. One of the prototypes used wireless temperature sensors that read the temperature of the hot and cold aisles every three minutes to increase battery life.

SDSC Datacenter AisleMany data centers use a standard hot aisle/cold aisle design. This design involves lining up server racks in alternating rows, with cold air intakes facing one way and hot air exhausts facing the other. The rows composed of rack fronts are called cold aisles. Typically, cold aisles face air conditioner output ducts. The rows that the heated exhausts pour into are called hot aisles. Typically, hot aisles face air conditioner return ducts.

Containment systems can help isolate hot aisles and cold aisles from each other and prevent hot and cold air from mixing. Such systems started out as using physical barriers that simply separated the hot and cold aisles with vinyl plastic sheeting or Plexiglas covers. Modern containment systems offer plenums and other commercial options that combine containment with variable fan drives (VFDs) to prevent cold air and hot air from mixing.

At SDSC, however, the entire area under the raised floor is used for the supply plenum, and the entire area above the ceiling is for the return plenum. Cold aisles use perforated floor tiles with specifically designed hole sizes to control the air flow volume from the space below the floor, while the hot aisles use ceiling grates that allow heated air to enter the space above the ceiling.

Controlling the air flow from all air handlers discharging into one common plenum presents a difficult problem, especially since these spaces also contain obstructions such as pipes and conduits. Moreover, not all of the compute clusters run at full capacity at any given time, and systems loads also change regularly as research projects start up or stop. These constantly changing factors cause the amount of heat dissipated from the supercomputer systems to fluctuate from minute to minute. The data center cooling system has to quickly adjust to accommodate these fluctuations in temperature.

“We learned a lot during the prototype and research phase of the cooling system design,” said Milkov. “We started by collecting a lot of data on how air flowed through the data center. We found that three minutes between temperature readings was too long an interval to keep the data center within the desired temperature ranges. Because of the longer interval, we used more electricity bringing the data center back to its temperature set points than we needed if we took temperature readings over shorter intervals and could make changes to the cooling system sooner.”

Realizing that a different approach was needed, Milkov put together a vendor evaluation process for an updated data center management system with the objective of reducing energy use while increasing the level of control capability available to the SDSC operations staff.

After extensive research, Milkov selected three companies for prototype installations. At the conclusion of a detailed evaluation, systems integration company Earth Base One (EBO) Corporation and a SNAP PAC-based control system were chosen for providing extensive control capabilities and energy savings.

Milkov and Michael Hyde, EBO’s president, approached the project with the same vision. “Rather than adapting an off-the-shelf data center management system to SDSC, we designed a tailor-built system for SDSC’s unique challenges,” said Hyde.

Opto 22, which develops and manufactures hardware and software products for applications in industrial automation, remote monitoring, and data acquisition, was chosen as the primary controls manufacturer. “The Opto 22 hardware and software not only won the competition for control and energy savings, but was also the least expensive vendor solution,” said Hyde. “The software’s excellent historical data collection and trending abilities allowed SDSC engineers to continue improving the system based on real data.”

“We appreciated the outstanding technical support SDSC received from Opto 22 during our design and prototype phase,” said Milkov. “When you’re trying to protect millions of dollars’ worth of research, you need a control system you can rely on.”

The full case study is available here.

About SDSC

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s Comet joins the Center’s data-intensive Gordon cluster, and are both part of the National Science Foundation’s XSEDE (eXtreme Science and Engineering Discovery Environment) program, the most advanced collection of integrated digital resources and services in the world.

About Opto 22

Opto 22 develops and manufactures hardware and software products for applications in industrial automation, remote monitoring, and data acquisition. Using standard, commercially available Internet, networking, and computer technologies, Opto 22’s input/output and control systems allow customers to monitor, control, and acquire data from all of the mechanical, electrical, and electronic assets that are key to their business operations. More information is at www.opto22.com.


Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire