Key Witness Helps Scientists Detect ‘Spooky’ Quantum Entanglement in Solid Materials

November 9, 2021

Quantum entanglement occurs when two particles appear to communicate without a physical connection, a phenomenon Albert Einstein famously called “spooky action at a distance.” Nearly 90 years later, a team led by the U.S. Department of Energy’s Oak Ridge National Laboratory demonstrated the viability of a “quantum entanglement witness” capable of proving the presence of entanglement between magnetic particles, or spins, in a quantum material.
A material’s spins, depicted as red spheres, are probed by scattered neutrons. Applying an entanglement witness, such as the QFI calculation pictured, causes the neutrons to form a kind of quantum gauge. This gauge allows the researchers to distinguish between classical and quantum spin fluctuations. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

The team – including researchers from ORNL, Helmholtz-Zentrum Berlin, the Technical University of Berlin, Institut Laue-Langevin, Oxford University and Adam Mickiewicz University – tested three entanglement witnesses using a combination of neutron scattering experiments and computational simulations. Entanglement witnesses are techniques that act as data analysis tools to determine which spins cross the threshold between the classical and quantum realms.

First introduced by John Stewart Bell in the 1960s, entanglement witnesses confirmed that the quantum theory questioned by other scientists had been correct. Bell’s technique relied on detecting one pair of particles at a time, but this approach is not useful for studying solid materials composed of trillions and trillions of particles. By targeting and detecting large collections of entangled spins using new entanglement witnesses, the team extended this concept to characterize solid materials and study exotic behavior in superconductors and quantum magnets.

To ensure that the witnesses could be trusted, the team applied all three of them to a material they knew to be entangled because of a previous spin dynamics study. Two of the witnesses, which are based on Bell’s approach, adequately indicated the presence of entanglement in this one-dimensional spin chain – a straight line of adjacent spins that communicate with their neighbors while disregarding other particles – but the third, which is based on quantum information theory, fared exceptionally well at the same task.

“The quantum Fisher information, or QFI, witness showed a close overlap between theory and experiment, which makes it a robust and reliable way to quantify entanglement,” said Allen Scheie, a postdoctoral research associate at ORNL and a lead author of the team’s proof-of-concept paper published in Physical Review B.

Because fluctuations in a material that appear to be quantum in nature can be caused by random thermal motion, which only vanishes at absolute zero on the temperature scale, most modern methods cannot distinguish between these false alarms and actual quantum activity. The team not only confirmed the theoretical prediction that entanglement increases as temperature decreases but also successfully differentiated between classical and quantum activity as part of the most comprehensive QFI demonstration since the technique was proposed in 2016.

“The most interesting materials are full of quantum entanglement, but those are precisely the ones that are the most difficult to calculate,” said ORNL neutron scattering scientist Alan Tennant, who leads a project focused on quantum magnets for the Quantum Science Center, or QSC, a DOE National Quantum Information Science Research Center headquartered at ORNL.

Previously, the challenge of quickly identifying quantum materials presented a significant roadblock to the center’s mission, which involves exploiting entanglement to develop novel devices and sensors while advancing the field of quantum information science. Streamlining this process with QFI allows QSC researchers to focus on harnessing the power of substances such as rare phases of matter called quantum spin liquids and materials that do not resist electricity called superconductors for data storage and computing applications.

“The power of QFI comes from its connection to quantum metrology, in which scientists entangle multiple quasiparticles to shrink uncertainty and obtain extremely precise measurements,” Scheie said. “The QFI witness reverses this approach by using the precision of an existing measurement to determine the minimum number of particles each spin is entangled with. This is a powerful way to reveal quantum interactions, which means that QFI is really applicable to any quantum magnetic material.”

Having established that QFI could correctly categorize materials, the team tested a second one-dimensional spin chain, a more complex material featuring anisotropy, which is a property that causes spins to lie in a plane rather than rotating at random. The researchers applied a magnetic field to the spin chain and observed an entanglement transition, in which the amount of entanglement fell to zero before reappearing. They published this finding in Physical Review Letters.

To achieve these results, the researchers studied both spin chains using neutron scattering and then analyzed legacy data from experiments conducted decades ago at the ISIS Neutron Source in England and the Institut Laue-Langevin in France along with new data from the Wide Angular-Range Chopper Spectrometer located at the Spallation Neutron Source, a DOE Office of Science user facility operated by ORNL. They also ran complementary simulations to validate the results against idealized theoretical data.

Neutrons, which Tennant describes as “beautifully simple,” are an ideal tool for probing the properties of a material because of their neutral charge and nondestructive nature.

“By studying the distribution of neutrons that scatter off of a sample, which transfers energy, we were able to use neutrons as a gauge to measure quantum entanglement without relying on theories and without the need for massive quantum computers that don’t exist yet,” Tennant said.

According to the team, this combination of advanced computational and experimental resources provided answers about the nature of quantum entanglement originally asked by the founders of quantum mechanics. Scheie expects that QFI calculations are likely to become part of the standard procedure for neutron scattering experiments that could eventually characterize even the most mysterious quantum materials.

The researchers received support from the DOE Office of Science, DOE’s Scientific Discovery through Advanced Computing program, the QSC, ORNL’s Laboratory Directed Research and Development program, the Center for Nanophase Materials Sciences – a DOE Office of Science user facility located at ORNL – and the European Research Council under the European Union Horizon 2020 Research and Innovation Programme.

UT-Battelle manages ORNL for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science 


Source: Elizabeth Rosenthal, ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire