Khronos Announces the Release of SYCL 2020 Provisional Specification

June 30, 2020

BEAVERTON, Ore., June 30, 2020 – The Khronos Group, an open consortium of industry-leading companies creating graphics and compute interoperability standards, announces the ratification and public release of the SYCL 2020 Provisional Specification.

SYCL is a standard C++ based heterogeneous parallel programming framework for accelerating High Performance Computing (HPC), machine learning, embedded computing, and compute-intensive desktop applications on a wide range of processor architectures, including CPUs, GPUs, FPGAs, and AI processors.The SYCL 2020 Provisional Specification is publicly available today to enable feedback from developers and implementers before the eventual specification finalization and release of the SYCL 2020 Adopters Program, which will enable implementers to be officially conformant—tentatively expected by the end of the year.

A royalty-free open standard, SYCL 2020 enables significant programmer productivity through an expressive domain-specific language, compact code, and simplified common patterns, such as Class Template Argument Deduction and Deduction Guides, all while preserving significant backwards compatibility with previous versions. SYCL 2020 is based on C++17 and includes new programming abstractions, such as unified shared memory, reductions, group algorithms, and sub-groups to enable high-performance applications across diverse hardware architectures.

“SYCL 2020 is a significant step towards bringing C++ heterogeneous programming to all,” said Michael Wong, Codeplay vice president and SYCL working group chair. “It supports diverse applications from HPC supercomputing centers, to powerful machine learning frameworks, to creative and professional applications on embedded and desktop PCs. These real-world insights will enable the SYCL Working Group to achieve our long-term dream of converging with ISO to bring parallel heterogeneous programming to modern C++ in an open standard collaborated by many companies across many varieties of processors.”

In parallel with the release of the SYCL 2020 specification, the SYCL ecosystem continues to grow with increased development of compilers, runtimes, libraries, and tools. A beta implementation of SYCL 2020 is available in Intel’s DPC++Codeplay’s ComputeCpp SYCL 1.2.1 conformant implementation includes selected SYCL 2020 features as extensions, with more being added over time. Both implementations are based on the Clang open-source compiler framework. Developers can download either implementation and experiment with SYCL 2020 features today.

At the Argonne National Laboratory, Exascale supercomputer systems using Intel chips are being built and new implementations seek to enable developers to easily scale C++ applications to accelerator clusters using SYCL. In Europe, the Cineca Supercomputing center is using the Celerity distributed runtime system, built on top of SYCL, to program the new Marconi100 cluster equipped with 3,920 GPUs and ranked #9 in the Top500 (June 2020).

SYCL 2020 continues to leverage OpenCL as a backend target to reach into diverse processor accelerator architectures, but the latest SYCL implementations are adding additional backends, providing enhanced deployment flexibility for SYCL developers.

To provide feedback on the SYCL 2020 specification, visit the Khronos SYCL Community Forum.

Industry Support for SYCL 2020

“Our users will benefit from features in the provisional SYCL 2020 specification,” said Hal Finkel, lead for compiler technology and programming languages, Argonne National Laboratory’s Leadership Computing Facility. “New features, such as support for unified memory and reductions, are important capabilities for programming high-performance-computing hardware. In addition, support for C++17 will allow our users to write better C++ code, with both language features (such as deduction guides) and library features (such as std::optional).”

“At Cineca, based on our experience, we confirm the value that SYCL is bringing to the development of high performance computing in a hybrid environment. In fact, through SYCL, it is possible to build a common and portable environment for the development of computing-intensive applications to be executed on HPC architectures configured with floating point accelerators, which allows industries and scientific communities to use the common availability of development tools, libraries of algorithms, accumulated experience,” said Sanzio Bassini, director of supercomputing, Application Innovation Dept, Cineca. “Cineca is already running the distributed Celerity runtime on top of several SYCL implementations on the new Marconi100 cluster, ranked no. 9 in the Top500 (June 2020), providing users with a unified API for both about 4000 NVIDIA Volta V100 GPUs and IBM Power9 host processors. SYCL 2020 is a big step towards a much leaner API that unlocks all the potential provided by modern C++ standards for accelerated data-parallel kernels, making the development of large-scale scientific software easier and more sustainable, either for industrial oriented domain applications for industries, either for scientific domain oriented applications.”

“We have seen a huge increase in SYCL developer adoption since the release of the last SYCL specification. Developers are demanding a model that enables them to write software that offers both performance and programmability across a wide range of vendor processors. SYCL provides this,” said Andrew Richards, founder and CEO, Codeplay Software. “The new features in SYCL 2020 bring some crucial enhancements that will benefit developers, with less code to write and the ability to target non-OpenCL devices.”

“Imagination recognizes the benefit of SYCL across multiple markets, enabling a straightforward and performant way to exploit the compute performance of our IP and is why our software stacks have been designed to improve SYCL performance,” said Mark Butler, vice president of software engineering, Imagination Technologies. “The ability to quickly port workloads from other proprietary APIs is a huge benefit, easing the transition from development on desktop to deployment on embedded systems. SYCL 2020 is a positive step forward for this API, enabling higher levels of performance, which will benefit developers and platform creators.”

“The SYCL 2020 Provisional Specification marks a significant milestone helping improve time-to-performance in programming heterogeneous computing systems through more productive and familiar C++ programming constructs,” said Jeff McVeigh, vice president, datacenter XPU products and solutions, Intel. “Through active collaboration with The Khronos Group, the new specification includes significant features pioneered in oneAPI’s Data Parallel C++, such as unified shared memory, group algorithms, and sub-groups that were upstreamed to SYCL 2020. Moving forward, Intel’s oneAPI toolkits, which include the SYCL-based Intel  oneAPI DPC++ Compiler, will deliver productivity and performance for open, cross-architecture programming.”

”NSITEXE supports the SYCL 2020 technology, which is gaining attention in embedded applications,” said Hideki Sugimoto, CTO, NSITEXE, Inc. “We are considering adopting this technology in our next generation of IP platforms.”

“Xilinx is excited about the progress achieved with SYCL 2020,” said Ralph Wittig, fellow, Xilinx. “This single-source C++ framework unifies host and device code for various kinds of accelerators in the same C++ program. With host-fallback device execution, developers can emulate device code on a CPU, exploring hardware-software co-design for adaptable computing devices. SYCL is now extensible via customizable back-ends, enabling device plug-ins for FPGAs and ACAPs.”

About Khronos

The Khronos Group is an open, non-profit, member-driven consortium of over 150 industry-leading companies creating advanced, royalty-free, interoperability standards for 3D graphics, augmented and virtual reality, parallel programming, vision acceleration and machine learning. Khronos activities include 3D Commerce, ANARI, glTF, NNEF, OpenCL, OpenGL, OpenGL ES, OpenVG, OpenVX, OpenXR, SPIR-V, SYCL, Vulkan, and WebGL. Khronos members drive the development and evolution of Khronos specifications and are able to accelerate the delivery of cutting-edge platforms and applications through early access to specification drafts and conformance tests.


Source: Khronos 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire