Know When to Unfold ’Em: Study Applies Error-Reducing Methods From Particle Physics to Quantum Computing

November 5, 2020

Nov.5, 2020 — Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and computer scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has successfully adapted and applied a common error-reduction technique to the field of quantum computing.

In the world of subatomic particles and giant particle detectors, and distant galaxies and giant telescopes, scientists have learned to live, and to work, with uncertainty. They are often trying to tease out ultra-rare particle interactions from a massive tangle of other particle interactions and background “noise” that can complicate their hunt, or trying to filter out the effects of atmospheric distortions and interstellar dust to improve the resolution of astronomical imaging.

Also, inherent problems with detectors, such as with their ability to record all particle interactions or to exactly measure particles’ energies, can result in data getting misread by the electronics they are connected to, so scientists need to design complex filters, in the form of computer algorithms, to reduce the margin of error and return the most accurate results.

The problems of noise and physical defects, and the need for error-correction and error-mitigation algorithms, which reduce the frequency and severity of errors, are also common in the fledgling field of quantum computing, and a study published in the journal npj Quantum Information found that there appear to be some common solutions, too.

Ben Nachman, a Berkeley Lab physicist who is involved with particle physics experiments at CERN as a member of Berkeley Lab’s ATLAS group, saw the quantum-computing connection while working on a particle physics calculation with Christian Bauer, a Berkeley Lab theoretical physicist who is a co-author of the study. ATLAS is one of the four giant particle detectors at CERN’s Large Hadron Collider, the largest and most powerful particle collider in the world.

“At ATLAS, we often have to ‘unfold,’ or correct for detector effects,” said Nachman, the study’s lead author. “People have been developing this technique for years.”

In experiments at the LHC, particles called protons collide at a rate of about 1 billion times per second. To cope with this incredibly busy, “noisy” environment and intrinsic problems related to the energy resolution and other factors associated with detectors, physicists use error-correcting “unfolding” techniques and other filters to winnow down this particle jumble to the most useful, accurate data.

“We realized that current quantum computers are very noisy, too,” Nachman said, so finding a way to reduce this noise and minimize errors – error mitigation – is a key to advancing quantum computing. “One kind of error is related to the actual operations you do, and one relates to reading out the state of the quantum computer,” he noted – that first kind is known as a gate error, and the latter is called a readout error.

The latest study focuses on a technique to reduce readout errors, called “iterative Bayesian unfolding” (IBU), which is familiar to the high-energy physics community. The study compares the effectiveness of this approach to other error-correction and mitigation techniques. The IBU method is based on Bayes’ theorem, which provides a mathematical way to find the probability of an event occurring when there are other conditions related to this event that are already known.

Nachman noted that this technique can be applied to the quantum analog of classical computers, known as universal gate-based quantum computers.

In quantum computing, which relies on quantum bits, or qubits, to carry information, the fragile state known as quantum superposition is difficult to maintain and can decay over time, causing a qubit to display a zero instead of a one – this is a common example of a readout error.

Superposition provides that a quantum bit can represent a zero, a one, or both quantities at the same time. This enables unique computing capabilities not possible in conventional computing, which rely on bits representing either a one or a zero, but not both at once. Another source of readout error in quantum computers is simply a faulty measurement of a qubit’s state due to the architecture of the computer.

In the study, researchers simulated a quantum computer to compare the performance of three different error-correction (or error-mitigation or unfolding) techniques. They found that the IBU method is more robust in a very noisy, error-prone environment, and slightly outperformed the other two in the presence of more common noise patterns. Its performance was compared to an error-correction method called Ignis that is part of a collection of open-source quantum-computing software development tools developed for IBM’s quantum computers, and a very basic form of unfolding known as the matrix inversion method.

The researchers used the simulated quantum-computing environment to produce more than 1,000 pseudo-experiments, and they found that the results for the IBU method were the closest to predictions. The noise models used for this analysis were measured on a 20-qubit quantum computer called IBM Q Johannesburg.

“We took a very common technique from high-energy physics, and applied it to quantum computing, and it worked really well – as it should,” Nachman said. There was a steep learning curve. “I had to learn all sorts of things about quantum computing to be sure I knew how to translate this and to implement it on a quantum computer.”

He said he was also very fortunate to find collaborators for the study with expertise in quantum computing at Berkeley Lab, including Bert de Jong, who leads a DOE Office of Advanced Scientific Computing Research Quantum Algorithms Team and an Accelerated Research for Quantum Computing project in Berkeley Lab’s Computational Research Division.

“It’s exciting to see how the plethora of knowledge the high-energy physics community has developed to get the most out of noisy experiments can be used to get more out of noisy quantum computers,” de Jong said.

The simulated and real quantum computers used in the study varied from five qubits to 20 qubits, and the technique should be scalable to larger systems, Nachman said. But the error-correction and error-mitigation techniques that the researchers tested will require more computing resources as the size of quantum computers increases, so Nachman said the team is focused on how to make the methods more manageable for quantum computers with larger qubit arrays.

Nachman, Bauer, and de Jong also participated in an earlier study that proposes a way to reduce gate errors, which is the other major source of quantum-computing errors. They believe that error correction and error mitigation in quantum computing may ultimately require a mix-and-match approach – using a combination of several techniques.

“It’s an exciting time,” Nachman said, as the field of quantum computing is still young and there is plenty of room for innovation. “People have at least gotten the message about these types of approaches, and there is still room for progress.” He noted that quantum computing provided a “push to think about problems in a new way,” adding, “It has opened up new science potential.”

The Oak Ridge Leadership Computing Facility, a DOE Office of Science user facility at Oak Ridge National Laboratory, provided the researchers with access to quantum-computing resources at IBM, including the IBM Quantum Experience and Q Hub Network.

Miroslav Urbanek in Berkeley Lab’s Computational Research Division also participated in the study, which was supported by the U.S. DOE’s Office of Science and the Aspen Center for Physics.

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 14 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

More info: https://newscenter.lbl.gov/2020/11/05/know-when-to-unfold-em-study-applies-error-reducing-methods-from-particle-physics-to-quantum-computing/


Source: Glenn Roberts Jr., Lawrence Berkeley National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Under The Wire: Nearly HPC News (June 13, 2024)

June 13, 2024

As managing editor of the major global HPC news source, the term "news fire hose" is often mentioned. The analogy is quite correct. In any given week, there are many interesting stories, and only a few ever become headli Read more…

Quantum Tech Sector Hiring Stays Soft

June 13, 2024

New job announcements in the quantum tech sector declined again last month, according to an Quantum Economic Development Consortium (QED-C) report issued last week. “Globally, the number of new, public postings for Qu Read more…

Labs Keep Supercomputers Alive for Ten Years as Vendors Pull Support Early

June 12, 2024

Laboratories are running supercomputers for much longer, beyond the typical lifespan, as vendors prematurely deprecate the hardware and stop providing support. A typical supercomputer lifecycle is about five to six years Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently king of accelerated computing) wins again, sweeping all nine Read more…

Highlights from GlobusWorld 2024: The Conference for Reimagining Research IT

June 11, 2024

The Globus user conference, now in its 22nd year, brought together over 180 researchers, system administrators, developers, and IT leaders from 55 top research computing centers, national labs, federal agencies, and univ Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst firm TechInsights. Nvidia's GPU shipments in 2023 grew by more Read more…

Under The Wire: Nearly HPC News (June 13, 2024)

June 13, 2024

As managing editor of the major global HPC news source, the term "news fire hose" is often mentioned. The analogy is quite correct. In any given week, there are Read more…

Labs Keep Supercomputers Alive for Ten Years as Vendors Pull Support Early

June 12, 2024

Laboratories are running supercomputers for much longer, beyond the typical lifespan, as vendors prematurely deprecate the hardware and stop providing support. Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Highlights from GlobusWorld 2024: The Conference for Reimagining Research IT

June 11, 2024

The Globus user conference, now in its 22nd year, brought together over 180 researchers, system administrators, developers, and IT leaders from 55 top research Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

ASC24 Expert Perspective: Dongarra, Hoefler, Yong Lin

June 7, 2024

One of the great things about being at an ASC (Asia Supercomputer Community) cluster competition is getting the chance to interview various industry experts and Read more…

HPC and Climate: Coastal Hurricanes Around the World Are Intensifying Faster

June 6, 2024

Hurricanes are among the world's most destructive natural hazards. Their environment shapes their ability to deliver damage; conditions like warm ocean waters, Read more…

ASC24: The Battle, The Apps, and The Competitors

June 5, 2024

The ASC24 (Asia Supercomputer Community) Student Cluster Competition was one for the ages. More than 350 university teams worked for months in the preliminary competition to earn one of the 25 final competition slots. The winning teams... Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire