LANL Researchers Design New Artificial Synapses for Neuromorphic Computing

June 2, 2023

June 2, 2023 — The human brain has been called the most complicated object in the universe. Trying to replicate that still-unmatched capability for computing, scientists at Los Alamos National Laboratory have made a new interface-type memristive device, which their results suggest can be used to build artificial synapses for next-generation neuromorphic computing. Memristive devices, or memristors, represent long-sought circuit technology that, unlike current resistor technology, has both programming and memory capabilities — memristors could remember which electrical state they were in when powered off, a human brain-like ability that opens up new possibilities for computing and devices.

Tested against a dataset of handwritten images from the Modified National Standards and Technology database, the interface-type memristors realized a high image recognition accuracy of 94.72%. Image: LANL.

“Data processing is an essential part of today’s science, with machine learning, artificial intelligence and artificial neural networks used to address pressing questions in everything from climate science to national security applications,” said Aiping Chen, Laboratory scientist with the Center for Integrated Nanotechnologies. “But conventional computing architecture demands a great deal of energy and is increasingly less able to scale up to meet bigger and bigger data challenges. Neuromorphic computing, which mimics the unmatched data storage and processing architecture and capabilities of the human brain, offers a path to continue to extend computing performance.”

Conventional computing is constrained by the so-called von Neumann bottleneck, in which computing and memory are separate. Processing advanced tasks like machine learning and image recognition on digital computers consume a significant amount of energy and time due to transferring the data back and forth between a central processing unit and memory. Data center energy consumption has increased rapidly in the past few years, with projections that approximately 8% of the world’s electricity will be used by data centers by 2030.

Additionally, in conventional computer architecture, billions of transistors on silicon-based microchips serve as switches for a computer’s binary code. Physical limits to the miniaturization of those transistors have helped spell the end of Moore’s Law, a maxim that foretold the doubling of processing power roughly every two years.

In-Memory Computing: Just Like a Brain

Co-locating information storage and processing at synapses, which connect the 100 billion neurons sending and receiving chemical information, the human brain’s “in-memory processing” saves time and energy. Neuromorphic computing relies on emergent devices such as memristors, switches between two terminals that control and remember the charge flowing through, to replicate the structure and function of synapses.

In the fast-evolving field of neuromorphic computing, memristor designs have included filament systems, in which a charge is delivered through the devices. But, prone to overheating, filament systems lack stability and reliability.

Chen and his colleagues are working on a different approach called an interface-type memristor, and have produced a reliable, high-performing device with a simple structure based on an Au/Nb-doped SrTiO3 interface — essentially gold and other semiconducting materials. The interface-type memristors can, in principle, be scaled down to nanometer size that even filament-based memristor technology cannot achieve. (By contrast, a human hair is approximately 100,000 nanometers thick.) And especially in contrast to transistor-based neuromorphic chips, the interface-type memristive device needs significantly less power to fuel its processing.

“Different from digital computing with a von Neumann architecture, neuromorphic computing, inspired by biological systems, works just like a brain,” said Chen. “The advantages of that structure include low-energy consumption, high parallelism and excellent error tolerance. The human brain runs at only 20 watts, after all, but learns extremely effectively. These advantages make it very good for advanced computing tasks like learning, recognition and decision-making.”

Excelling at Advanced Computing Tasks

The team used artificial neural-network simulation to study the computing performance of the interface-type memristor, testing it against a dataset of handwritten images from the Modified National Standards and Technology database maintained by the National Institute of Standards and Technology. Demonstrating excellent uniformity, programmability and reliability, the device realized a recognition accuracy of 94.72%.

That performance makes the team believe these new interface-type memristive devices can be a fundamental hardware piece for next-generation neuromorphic computing.

“The capabilities we’re seeing suggest that neuromorphic chips, like human brains, will be good at advanced tasks that include learning and real-time decision-making,” said Chen. “We could see neuromorphic computing enable a lot of applications that require intelligence, from self-driving cars, to drones, to security cameras. Basically, many things that people are capable of doing, these types of devices will be able to do.”

The team plans to continue to develop the technology with an emphasis on the need for co-design — hardware design informed by algorithmic approaches offered by computer scientists.

Paper: “An Interface-Type Memristive Device for Artificial Synapse and Neuromorphic Computing,” Advanced Intelligent Systems. DOI: 10.1002/aisy.202300035

Funding: The work was supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory, the NNSA and the U.S. Department of Energy Office of Science’s funding of the Center for Integrated Nanotechnologies.


Source: LANL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire