Large Hadron Collider Prepares for New Achievements

December 3, 2018

GENEVA, Dec. 3, 2018 — Early this morning, operators of the CERN Control Centre turned off the Large Hadron Collider (LHC), ending the very successful second run of the world’s most powerful particle accelerator. CERN’s accelerator complex will be stopped for about two years to enable major upgrade and renovation works.

During this second run (2015–2018), the LHC performed beyond expectations, achieving approximately 16 million billion proton-proton collisions at an energy of 13 TeV and large datasets for lead-lead collisions at an energy of 5.02 TeV. These collisions produced an enormous amount of data, with more than 300 petabytes (300 million gigabytes) now permanently archived in CERN’s data centre tape libraries. This is the equivalent of 1000 years of 24/7 video streaming! By analysing these data, the LHC experiments have already produced a large amount of results, extending our knowledge of fundamental physics and of the Universe.

The second run of the LHC has been impressive, as we could deliver well beyond our objectives and expectations, producing five times more data than during the first run, at the unprecedented energy of 13 TeV,” says Frédérick Bordry, CERN Director for Accelerators and Technology. “With this second long shutdown starting now, we will prepare the machine for even more collisions at the design energy of 14 TeV.”

In addition to many other beautiful results, over the past few years the LHC experiments have made tremendous progress in the understanding of the properties of the Higgs boson,” adds Fabiola Gianotti, CERN Director-General. “The Higgs boson is a special particle, very different from the other elementary particles observed so far; its properties may give us useful indications about physics beyond the Standard Model.”

A cornerstone of the Standard Model of particle physics – the theory that best describes the elementary particles and the forces that bind them together – the Higgs boson was discovered at CERN in 2012 and has been studied ever since. In particular, physicists are analysing the way it decays or transforms into other particles, to check the Standard Model’s predictions. Over the last three years, the LHC experiments extended the measurements of rates of Higgs boson decays, including the most common, but hard-to-detect, decay into bottom quarks, and the rare production of a Higgs boson in association with top quarks.The ATLAS and CMS experiments also presented updated measurement of the Higgs boson mass with the best precision to date. 

Beside the Higgs boson, the LHC experiments produced a wide range of results and hundreds of scientific publications, including the discovery of exotic new particles such as Ξcc++ and pentaquarks with the LHCb experiment, and the unveiling of so-far unobserved phenomena in proton–proton and proton-lead collisions at ALICE.

During the two-year break, Long Shutdown 2 (LS2), the whole accelerator complex and detectors will be reinforced and upgraded for the next LHC run, starting in 2021, and the High-Luminosity LHC (HL-LHC) project, which will start operation after 2025. Increasing the luminosity of the LHC means producing far more data.

“The rich harvest of the second run enables the researchers to look for very rare processes,” explains Eckhard Elsen, Director for Research and Computing at CERN. “They will be busy throughout the shutdown examining the huge data sample for possible signatures of new physics that haven’t had the chance to emerge from the dominant contribution of the Standard Model processes. This will guide us into the HL-LHC when the data sample will increase by yet another order of magnitude.” 

Several components of the accelerator chain (injectors) that feed the LHC with protons will be renewed to produce more intense beams. The first link in this chain, the linear accelerator Linac2, will leave the floor to Linac4. The new linear accelerator will accelerate H– ions, which are later stripped to protons, allowing the preparation of brighter beams. The second accelerator in the chain, the Proton Synchrotron Booster, will be equipped with completely new injection and acceleration systems. The Super Proton Synchrotron (SPS), the last injector before the LHC, will have new radio frequency power to accelerate higher beam intensities, and will be connected to upgraded transfer lines.

Some improvements of the LHC are also planned during LS2. The bypass diodes – the electrical components that protect the magnets in case of quench – will be shielded, as prerequisite for extending the LHC beam energy to 7 TeV after the LS2, and more than 20 main superconducting magnets will be replaced. Moreover, civil engineering works for the HL-LHC that started in June 2018 will continue, new galleries will be connected to the LHC tunnel, and new powerful magnet and superconducting technologies will be tested for the first time.

All the LHC experiments will upgrade important parts of their detectors in the next two years. Almost the entire LHCb experiment will be replaced with faster detector components that will enable the collaboration to record events at full proton-proton rate. Similarly, ALICE will upgrade the technology of its tracking detectors. ATLAS and CMS will undergo improvements and start to prepare for the big experiments’ upgrade for HL-LHC.

Proton beams will resume in spring 2021 with the LHC’s third run.


Source: CERN

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This