Liberating Quantum Processors from Parasitic Interactions

November 25, 2020

JÜLICH and AACHEN, Germany, Nov. 25, 2020 — Creating perfect entanglement – a basic prerequisite for the success of quantum computers – requires full control over all qubit-qubit interactions. Until now, this goal has been hindered by the presence of an always-on and fundamental parasitic interaction that disturbs entanglement. Now, researchers at Forschungszentrum Jülich and RWTH Aachen University in collaboration with IBM T.J. Watson Research Center and Syracuse University both in the USA, have developed a theory-motivated idea and successfully implemented it to eliminate these interactions between two qubits. Their work results in a better understanding of the physics behind the error which also allows more precise entanglement to be engineered, as well as the unentanglement of two qubits.

New research results of Jülich and international researchers allow more precise entanglement to be engineered between two qubits that are at the very heart of quantum computers, such as the one currently being developed as part of the European OpenSuperQ project, to be operated in Jülich. The photo shows a detail of the cryostat that is used to cool the chip to a temperature of 10 millikelvin (-273.13℃). Copyright: Forschungszentrum Jülich / Ralf-Uwe Limbach

Imagine a computer processor with no interaction between bits. Such a device could not compute anything because it cannot process AND and OR logical operations needed to add and multiply numbers. A quantum computing processor is no exception. Quantum bits need to interact with one another to create entanglement, however they also need as much isolation from the environment as possible in order to be stable.

Notable quantum processors have so far been made using superconducting circuits. On such circuits, qubits can interact with one another via shared couplers. Responding to the request for entanglement between two qubits, a two-qubit gate operation is activated to let them interact in a controllable way. However, up to now there has been a problem: desired entanglements could not be made with more than 99% accuracy. Such an imperfection is an insurmountable barrier to the ambition of scaling up the number of qubits in quantum processors. A relatively small computation that requires a series of two-qubit gates accumulates the error in every step, and eventually fails.

Experiments had shown that one of the main elements in the error is a fundamental parasitic interaction that is always-on. The theoretical research group of Dr. Mohammad Ansari at the Peter Grünberg Institute at Forschungszentrum Jülich and RWTH Aachen University in Germany, in collaboration with researchers at IBM T.J. Watson Research Center and the group of Prof. Britton Plourde at Syracuse University in the USA, have now developed a theory-motivated idea and implemented it to eliminate parasitic interactions between two qubits.

“A real qubit does not have just two computational levels, it has more. When two qubits are put together, the computational states increase to four, but in real life there are many non-computational levels around them and they repel one another. The parasitic interaction between two qubits originates from these repulsions. The key point is that in all circuits made so far, all qubits have similar anharmonicity signs, either negative with higher excited levels that move closer as we go higher in energy, or positive with higher excited levels that move further apart. We combined the two types of qubits on a circuit and noticed an interesting theoretical symmetry that makes it possible to cancel the repulsions and set qubits free from parasitic interaction,” Ansari explains.

Motivated by the idea, the researchers designed the first interacting qubit-qubit circuit with dissimilar qubits. In their circuit, a superconducting qubit with negative anharmonicity called a transmon is coupled to another superconducting qubit with positive anharmonicity, a so-called capacitively-shunted flux qubit (CSFQ), via a resonator. This circuit successfully demonstrated no parasitic interaction between the two qubits.

“We were surprised by the accuracy of the experimental verification of the symmetry! We knew that in general there are two dissimilar species of qubits with positive or negative anharmonicity signs. What we did not know, however, was that the dissimilar qubits are like the yin and yang of quantum computation: together they make qubits free from level repulsions,” Ansari continued.

The researchers performed two-qubit gate operations on the two qubits and showed that for boosting the gate fidelity, zeroing the parasitic interaction is as important as enhancing qubit coherence times. Their theory predicts that their architecture is not far off from achieving 99.9% fidelity in a two-qubit gate.

“This work not only brings us an important step closer to engineering perfect entanglement, but also accomplishes this in an elegant manner interesting to a broad physics audience”, enthuses Prof. David DiVincenzo, director at the Peter Grünberg Institute. “This is almost a textbook example of physics intuition being confirmed by experiment. It also opens up tremendous opportunities in quantum metrology, cryptography, internet, and computation as well as thermodynamics and nonequilibrium systems – in brief, wherever entanglement is useful.”

Original publication: Suppression of Unwanted ZZ Interactions in a Hybrid Two-Qubit System, Phys. Rev. Lett. 125, 200504 (2020).
DOI: 10.1103/PhysRevLett.125.200504


Source: Forschungszentrum Jülich

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire