Lincoln Laboratory Supercomputing Center Established

May 18, 2016

May 18 — Lincoln Laboratory has been a world leader in interactive supercomputing since the 1950s. In 1955, TX-0, the first fully transistor-based computer, was built to support a wide range of research at the Laboratory and the MIT campus, and became the basis for the second largest computing company in the world, Digital Equipment Corporation. In 2001, the Laboratory developed Parallel Matlab, which enabled thousands of researchers worldwide to use interactive supercomputing for high performance data analysis. In 2008, the Laboratory demonstrated the largest single problem ever run on a computer, using its TX-2500 supercomputer, a part of the system called LLGrid. Recently, the Laboratory acknowledged the importance of the LLGrid world-class computing capability with the establishment of the Lincoln Laboratory Supercomputing Center (LLSC) in April.

The Lincoln Laboratory Supercomputing team (Photo: Jon Barron)

LLSC is based in part on the LLGrid infrastructure, but was developed to enhance computing power and accessibility to over 1,000 researchers across the Institute. “By establishing the LLSC, Lincoln Laboratory will be able to better address supercomputing needs across all Laboratory missions, develop new supercomputing capabilities and technologies, and spawn even closer collaborations with MIT campus supercomputing initiatives,” said Dr. Jeremy Kepner, Laboratory Fellow, and head of the Supercomputing Center. “These brilliant engineers, scientists, faculty, and students use our capabilities to conduct research in diverse fields such as space observations, robotic vehicles, communications, cyber security, machine learning, sensor processing, electronic devices, bioinformatics, and air traffic control.”

Only 13 years ago, the Laboratory’s supercomputing capability, LLGrid, was composed of a single 16-processor system. Dr. Albert Reuther, Manager, Supercomputing Center, said that a “different kind of supercomputing” was clearly needed to meet the needs of Laboratory researchers. Since then, the capability has expanded to thousands of processors across several systems. In addition, Reuther said that the center differs from others like it because of the team’s “focus on interactive supercomputing for high performance data analysis,” and the “extremely ‘green’ computing center in Holyoke, Massachusetts, which allows our computers to run 93% carbon-free.”

“This new level of supercomputing capability will be a key technology for the computational fluid dynamics (CFD) work performed in the Structural and Thermal-Fluids Engineering Group,” said Dr. Nathan J. Falkiewicz. Falkiewicz explained that the new capability will allow his team to take advantage of the parallelism inherent in existing CFD codes to significantly reduce simulation time for computationally taxing problems, as well as enable simulation for certain classes of problems that would otherwise have “prohibitively long” execution times without access to large core-count, high-performance computing clusters. Dr. Orion S. Crisafulli of the Active Optical Systems Group said that the supercomputing capability has enabled his team, in collaboration with MIT campus, to run complex simulations in the performance investigation of a compact microlidar system. “Access to a large number of compute nodes, each with substantial memory and a streamlined job submission process, has shortened the run time for our simulations from a week to a few hours,” said Crisafulli. “This allows us to explore a significantly larger system parameter space than we would otherwise be able to, and ultimately achieve a more complete understanding of the capabilities of the microlidar system concept.”

Reuther said that the LLSC exists today in large part because of the researchers who utilize supercomputing capabilities to produce cutting-edge research results, as well as many other supporters: “LLSC has been blessed to have the support of visionaries in the Director’s Office, the Technology Office, and the Steering Committee who have seen the potential of supercomputing to enable all of the Laboratory’s missions.” Reuther also credits the MIT Lincoln Laboratory Beaver Works Center for playing a critical role in the LLSC’s collaborations with campus.

“Creating the Lincoln Laboratory Supercomputing Center has been a goal for the team for many years and it is tremendously rewarding to see it come to fruition,” said Kepner. “Laboratory researchers will see continued improvement in the LLSC systems, MIT Campus will benefit from our unique interactive supercomputing technologies, and Laboratory and campus researchers will be able to collaborate more closely on their joint research projects.”


Source: Jacob Solomon, Lincoln Laboratory, MIT

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire