LLNL: Ignition Gives US ‘Unique Opportunity’ to Lead World’s IFE Research

February 7, 2023

Feb. 7, 2023 — Lawrence Livermore National Laboratory (LLNL)’s historic achievement of fusion ignition on December 5th at the National Ignition Facility (NIF) positions the United States with a “unique opportunity” to further lead the world scientific community’s pursuit of developing fusion as a future source of clean energy, according to a newly released report.

Capitalizing on that opportunity will require a renewed, robust and rapidly paced program of inertial fusion energy (IFE) research that coordinates efforts from the public, private and academic sectors. This conclusion comes from the U.S. Department of Energy (DOE) Office of Science-sponsored “IFE Basic Research Needs” (BRN) report, which resulted from a three-day workshop last June and many months of work by a panel of experts.

“There is a huge amount of momentum in the fusion field right now, which gives us a very special opportunity to grow the national IFE program and accelerate the development of fusion energy by leveraging our leadership in inertial confinement fusion (ICF), developing new collaborations through public-private partnerships and working closely with DOE and the community,” said LLNL physicist Tammy Ma, the lead for the Laboratory’s Inertial Fusion Energy Institutional Initiative.

The virtual Basic Research Needs workshop, chaired by Ma and Professor Riccardo Betti of the University of Rochester, brought researchers and IFE supporters together to explore the science, technology and investments needed to realize IFE’s potential (see “DOE Workshop Examines Inertial Fusion Energy Research Needs”).

The workshop, held from June 21 to 23, was convened as momentum for IFE accelerated in the wake of NIF’s Aug. 8, 2021 experiment that produced 1.35 megajoules (MJ) of  fusion energy, bringing NIF to the threshold of ignition.

During the months both before and following the workshop, 120 panelists invited by DOE worked together to author the “Basic Research Needs” report, which will become a foundational guide for DOE to establish a national IFE program.

The report was basically completed by Dec. 5. But on that day, NIF provided IFE an even bigger shot of momentum when an ICF experiment attained ignition—the long-sought “proof of concept” that the same thermonuclear fusion reaction that powers the sun, the stars and nuclear weapons, can be reproduced in a laboratory.

NIF, the world’s largest and most energetic laser system, used its 192 lasers for an ICF experiment that yielded 3.15 megajoules (MJ) of energy compared to 2.05 MJ of laser energy that was delivered to the target. This feat established a scientific energy gain of 1.5, over the gain of 1 used by the National Academy of Sciences to define ignition, and provides the “unique opportunity right now to grow the national program by nourishing and leveraging our (US) leadership in ICF,” the 250-page report said.

“With the demonstration of ignition on the NIF, we are at a critical juncture in IFE research,” the report said. “As a community, we can exploit the growing scientific basis of fusion ignition, burn and energy gain for practical applications. We have the opportunity now to incorporate and integrate multiple emerging technologies to make rapid progress.”

But the current infrastructure around ICF, which supports the National Nuclear Security Administration (NNSA)’s Stockpile Stewardship program, and high energy density (HED) physics, designed to improve fundamental understanding of extreme environments, “is insufficient to demonstrate the feasibility of IFE today,” the report said. “A dedicated IFE program is necessary to push for improved utilization of existing infrastructure by increasing the shots available to IFE research.”

The formidable scientific and technological challenges that lie ahead before fusion energy becomes fast, efficient, economical and reliable enough “can be overcome with expanded, coordinated research, development and deployment programs and strategic public-private partnerships,” the report said.

The BRN report’s findings are:

  • IFE and magnetic fusion energy (MFE) — which uses powerful magnetic fields — are two main approaches that have different technical risks and benefits. Both should be considered important parts of the DOE’s Fusion Energy Sciences research and development portfolio. Creating and growing a healthy new national IFE program will require the IFE and MFE sectors collaborating to take advantage of technological developments to address common issues.
  • NIF’s demonstration of thermonuclear ignition “constitutes a pivotal point in the development of inertial fusion energy.”
  • Ignition and other major advances in IFE-relevant physics and technology during the past several decades were mostly funded under the nation’s national security mission, an investment that makes the U.S. “the recognized leader in IFE science and technology.”
  • With private industry driving the commercialization of fusion energy in the U.S., “public-private partnerships could greatly accelerate the development of all fusion energy concepts.”
  • “Accelerating IFE will require a suite of dedicated, new and upgraded facilities to increase the rate of learning and test new technologies.”
  • ICF computer modeling codes primarily reside at NNSA national laboratories, including LLNL. The codes were “built on decades of investment and expertise and constitute a valuable resource for advancing IFE science and technology,” the report said. An assessment of how to access ICF codes optimally and securely for IFE development should be carried out with NNSA.
  • Improved diversity, equity and inclusion measures are needed to enhance the climate and culture of the broader field of fusion and plasma research.

Additionally, the report said one national IFE team or partnership should be formed to focus on “making the best use of existing facilities.” The report notes that an IFE science and technology push could leverage existing resources such as LaserNetUS, a broad network of university and government laser research facilities that includes LLNL’s Jupiter Laser Facility.

The report acknowledged that developing a fusion pilot plant still faces challenges that could take years or decades to surmount. Accelerating progress toward building those pilot plants will require evaluating and identifying the most promising concepts and taking advantage of emerging technologies such as exascale computing, artificial intelligence, machine learning, advanced manufacturing and high-rep-rate laser systems.

“We have a unique opportunity right now to grow the national program by nourishing and leveraging our leadership in ICF with unique and world-leading competencies in the underlying science and technology that underpins IFE,” the report said.

LLNL has already been out in front in helping spur development of IFE, including sponsoring a  community workshop last February on the potential for ICF research to generate commercially viable IFE and participating in a DOE workshop on public-private fusion energy partnerships in June.

The Lab also organized a two-day conference, held on Oct. 27 and Nov. 10, that was aimed at creating a “collaboratory” effort between U.S. national laboratories, university researchers and private companies working on various aspects of fusion energy development.

LLNL Director Kim Budil said the achievement of ignition at NIF signals the time is now for a major push to make IFE a reality.

“This report provides an important roadmap to tackle the significant scientific and engineering challenges that still lie ahead on the path toward a fusion energy future,” Budil said. “The report outlines exciting opportunities for LLNL to partner with the entire fusion energy community as we work together to accelerate the development of IFE during what promises to be a transformational decade of high energy density science and fusion research.”


Source: Benny Evangelista, LLNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire