LLNL Pairs Computer Chip From Cerebras with ‘Lassen’ Supercomputer to Accelerate AI Research

August 19, 2020

Aug. 19, 2020 — Lawrence Livermore National Laboratory (LLNL) and artificial intelligence computer company Cerebras Systems have integrated the world’s largest computer chip into the National Nuclear Security Administration’s (NNSA’s) Lassen system, upgrading the top-tier supercomputer with cutting-edge AI technology.

Technicians recently completed connecting the Silicon Valley-based company’s massive, 1.2 trillion transistor Wafer-Scale Engine (WSE) chip – designed specifically for machine learning and AI applications – to the 23-petaflop Lassen, along with the CS-1 accelerator hardware system that houses the chip. Lassen is the unclassified companion to the IBM/NVIDIA system Sierra and is currently No. 14 on the latest Top 500 List of the world’s most powerful supercomputers.

The successful pairing of Cerebras’ machine learning system with Lassen’s world-class simulation capability makes LLNL the first institution to integrate the AI platform with a large-scale supercomputer and creates a radically new type of computing solution, enabling researchers to investigate new approaches to predictive modeling. Users gained access to the system in July and have begun work on initial AI models.

Funded by the NNSA’s Advanced Simulation and Computing (ASC) program, the platform aims to accelerate solutions for crucial Department of Energy and NNSA national security mission applications by orders of magnitude over the coming decade, researchers said. Fusion implosion experiments performed at the National Ignition Facility, materials science and rapid design of new prescription drugs for COVID-19 and cancer (through the Accelerating Therapeutic Opportunities in Medicine, or ATOM project) are all early applications.

“The addition of an AI component to a world-class supercomputer like Lassen will allow our scientists and physicists to leverage the large investments in AI being made by industry to improve both the accuracy of our simulations as well as the productivity of the end user in solving mission critical problems,” said Thuc Hoang, acting director of the ASC program. “We are excited to be collaborating with Cerebras in putting this pioneering technology to work for NNSA.”

Billed as the “world’s fastest AI supercomputer,” the CS-1 system runs on the WSE chip, which consists of 400,000 AI-optimized cores, 18 gigabytes of on-chip memory and 100 petabits per second of on-chip network bandwidth. The upgrade marks the first time LLNL has a high-performance computing (HPC) resource that has included AI-specific hardware and effectively creates the world’s first computer system designed for “cognitive simulation” (CogSim) – a term used by LLNL scientists to describe the combination of traditional HPC simulations with AI.

“While Moore’s Law is not yet dead, we can see that it’s slowing down. The historic cadence of hardware improvements has slowed or even ceased, but the demand for computing has not,” said Chief Technology Officer for Livermore Computing Bronis R. de Supinski, who led the CS-1 procurement effort. “We need new answers for how to improve our ability to meet our mission requirements and to respond to ever-increasing computational requirements. Cognitive simulation is an approach that we believe could drive continued exponential capability improvements, and a system-level heterogeneous approach based on novel architectures such as the Cerebras CS-1 are an important part of achieving those improvements.”

Combining the CS-1 with Lassen allows LLNL to explore heterogeneity, wherein the supercomputer includes computer elements with different specializations that each contribute to working on a given job, de Supinski said. This would allow operations such as data generation and error correction to run concurrently, resulting in a much more integrated, efficient and cost-effective solution to scientific problems, according to Lab researchers.

“Having a heterogeneous system is motivating us to identify where in our applications multiple pieces can be executed simultaneously,” said LLNL computer scientist Ian Karlin. “For many of our cognitive simulation workloads, we will run the machine learning parts on the Cerebras hardware, while the HPC simulation piece continues on the GPUs, improving time-to-solution.”

The Cerebras WSE processor is optimized for deep learning. It is more than 56 times larger than the largest graphics processing unit (GPU), and contains 78 times more compute cores. With 18 gigabytes of on-chip memory, the WSE has 3,000 times more on-chip memory and more than 10,000 times more memory bandwidth than GPUs. The WSE chip is packaged in the CS-1 system, which includes water-cooling and more than 1.2 Terabits per second of I/O bandwidth. The platform is linked to Lassen through the supercomputer’s existing Mellanox InfiniBand communication network.

“Cerebras is proud to be partnering with LLNL to push the boundaries of supercomputing. It is every startup’s dream to help take their industry into new and uncharted territory,” said Andrew Feldman, founder and CEO of Cerebras Systems. “The CS-1 is the fastest AI computer in existence, and by integrating into Lassen, one of the world’s fastest supercomputers, a new and unique class of solutions emerge. This integrated AI + supercomputer powerhouse combines the best of supercomputing horsepower with the best in AI-specific computation to create a workflow aimed at solving the most challenging problems in science and technology.”

Lab computer scientists said the system’s capabilities will enable them to skip unnecessary processing in workflows and accelerate deep learning neural networks. Wafer-scale integration will minimize the limits of communication for scaling up the training of neural networks and how often researchers need to “slice and dice” problems into smaller jobs, said LLNL computer scientist Brian Van Essen, who heads the Lab’s efforts in large-scale neural networks.

“Either we can do scientific exploration in a shorter amount of compute time, or we could go more in-depth in the areas where the science is less certain, using more compute time but getting a better answer,” Van Essen said. “Having this system be monitored by the cognitive framework can allow us to improve the efficiency of our physicists. Rather than babysitting the simulations to look for errors, they can hopefully start to look more into the scientific questions that are being illuminated by this type of system.”

A research team led by Van Essen has selected two AI models from a Laboratory Director’s Initiative on Cognitive Simulation to run on the CS-1 system. LLNL researchers said that their preliminary work focuses on learning from up to five billion simulated laser implosion images for optimization of fusion targets used in experiments at the National Ignition Facility (NIF), with the goal of reaching high energy output and robust fusion implosions for stockpile stewardship applications.

LLNL physicist and Cognitive Simulation lead Brian Spears said NIF scientists will use the CS-1 to embed dramatically faster AI-based physics models directly inside Lassen’s simulation codes, resulting in significantly more detailed physics in less time. Additionally, the expanded compute load will allow scientists to merge enormous simulation volume with hyper-precision experimental data, Spears said.

“Pairing the AI power of the CS-1 with the precision simulation of Lassen creates a CogSim computer that kicks open new doors for inertial confinement fusion (ICF) experiments at the National Ignition Facility,” Spears said “Now, we can combine billions of simulated images with NIF’s amazing X-ray and neutron camera output to build improved predictions of future fusion designs. And, we’re pretty sure we’re just scratching the surface – giving ourselves a sneak peek at what future AI-accelerated HPC platforms can deliver and what we will demand of them.”

To ensure a successful integration, LLNL and Cerebras are engaging in an Artificial Intelligence Center of Excellence (AICoE) over the coming years to determine the optimal parameters that will allow cognitive simulation to work with the Lab’s workloads. Depending on the results, LLNL could add more CS-1 systems, both to Lassen and other supercomputing platforms.

“I’m super excited,” said Van Essen, who is leading the AICoE effort. “This is why we’re here, to do this kind of science. I’m a computer architect by training, so the opportunity to build this kind of system and be the first one to deploy these things at this scale is absolutely invigorating. Integrating and coupling it into a system like Lassen gives us a really unique opportunity to be the first to explore this kind of framework.”

About Lawrence Livermore National Laboratory 

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation’s most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy’s National Nuclear Security Administration.


Source: Lawrence Livermore National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire