LLNL Pairs Computer Chip From Cerebras with ‘Lassen’ Supercomputer to Accelerate AI Research

August 19, 2020

Aug. 19, 2020 — Lawrence Livermore National Laboratory (LLNL) and artificial intelligence computer company Cerebras Systems have integrated the world’s largest computer chip into the National Nuclear Security Administration’s (NNSA’s) Lassen system, upgrading the top-tier supercomputer with cutting-edge AI technology.

Technicians recently completed connecting the Silicon Valley-based company’s massive, 1.2 trillion transistor Wafer-Scale Engine (WSE) chip – designed specifically for machine learning and AI applications – to the 23-petaflop Lassen, along with the CS-1 accelerator hardware system that houses the chip. Lassen is the unclassified companion to the IBM/NVIDIA system Sierra and is currently No. 14 on the latest Top 500 List of the world’s most powerful supercomputers.

The successful pairing of Cerebras’ machine learning system with Lassen’s world-class simulation capability makes LLNL the first institution to integrate the AI platform with a large-scale supercomputer and creates a radically new type of computing solution, enabling researchers to investigate new approaches to predictive modeling. Users gained access to the system in July and have begun work on initial AI models.

Funded by the NNSA’s Advanced Simulation and Computing (ASC) program, the platform aims to accelerate solutions for crucial Department of Energy and NNSA national security mission applications by orders of magnitude over the coming decade, researchers said. Fusion implosion experiments performed at the National Ignition Facility, materials science and rapid design of new prescription drugs for COVID-19 and cancer (through the Accelerating Therapeutic Opportunities in Medicine, or ATOM project) are all early applications.

“The addition of an AI component to a world-class supercomputer like Lassen will allow our scientists and physicists to leverage the large investments in AI being made by industry to improve both the accuracy of our simulations as well as the productivity of the end user in solving mission critical problems,” said Thuc Hoang, acting director of the ASC program. “We are excited to be collaborating with Cerebras in putting this pioneering technology to work for NNSA.”

Billed as the “world’s fastest AI supercomputer,” the CS-1 system runs on the WSE chip, which consists of 400,000 AI-optimized cores, 18 gigabytes of on-chip memory and 100 petabits per second of on-chip network bandwidth. The upgrade marks the first time LLNL has a high-performance computing (HPC) resource that has included AI-specific hardware and effectively creates the world’s first computer system designed for “cognitive simulation” (CogSim) – a term used by LLNL scientists to describe the combination of traditional HPC simulations with AI.

“While Moore’s Law is not yet dead, we can see that it’s slowing down. The historic cadence of hardware improvements has slowed or even ceased, but the demand for computing has not,” said Chief Technology Officer for Livermore Computing Bronis R. de Supinski, who led the CS-1 procurement effort. “We need new answers for how to improve our ability to meet our mission requirements and to respond to ever-increasing computational requirements. Cognitive simulation is an approach that we believe could drive continued exponential capability improvements, and a system-level heterogeneous approach based on novel architectures such as the Cerebras CS-1 are an important part of achieving those improvements.”

Combining the CS-1 with Lassen allows LLNL to explore heterogeneity, wherein the supercomputer includes computer elements with different specializations that each contribute to working on a given job, de Supinski said. This would allow operations such as data generation and error correction to run concurrently, resulting in a much more integrated, efficient and cost-effective solution to scientific problems, according to Lab researchers.

“Having a heterogeneous system is motivating us to identify where in our applications multiple pieces can be executed simultaneously,” said LLNL computer scientist Ian Karlin. “For many of our cognitive simulation workloads, we will run the machine learning parts on the Cerebras hardware, while the HPC simulation piece continues on the GPUs, improving time-to-solution.”

The Cerebras WSE processor is optimized for deep learning. It is more than 56 times larger than the largest graphics processing unit (GPU), and contains 78 times more compute cores. With 18 gigabytes of on-chip memory, the WSE has 3,000 times more on-chip memory and more than 10,000 times more memory bandwidth than GPUs. The WSE chip is packaged in the CS-1 system, which includes water-cooling and more than 1.2 Terabits per second of I/O bandwidth. The platform is linked to Lassen through the supercomputer’s existing Mellanox InfiniBand communication network.

“Cerebras is proud to be partnering with LLNL to push the boundaries of supercomputing. It is every startup’s dream to help take their industry into new and uncharted territory,” said Andrew Feldman, founder and CEO of Cerebras Systems. “The CS-1 is the fastest AI computer in existence, and by integrating into Lassen, one of the world’s fastest supercomputers, a new and unique class of solutions emerge. This integrated AI + supercomputer powerhouse combines the best of supercomputing horsepower with the best in AI-specific computation to create a workflow aimed at solving the most challenging problems in science and technology.”

Lab computer scientists said the system’s capabilities will enable them to skip unnecessary processing in workflows and accelerate deep learning neural networks. Wafer-scale integration will minimize the limits of communication for scaling up the training of neural networks and how often researchers need to “slice and dice” problems into smaller jobs, said LLNL computer scientist Brian Van Essen, who heads the Lab’s efforts in large-scale neural networks.

“Either we can do scientific exploration in a shorter amount of compute time, or we could go more in-depth in the areas where the science is less certain, using more compute time but getting a better answer,” Van Essen said. “Having this system be monitored by the cognitive framework can allow us to improve the efficiency of our physicists. Rather than babysitting the simulations to look for errors, they can hopefully start to look more into the scientific questions that are being illuminated by this type of system.”

A research team led by Van Essen has selected two AI models from a Laboratory Director’s Initiative on Cognitive Simulation to run on the CS-1 system. LLNL researchers said that their preliminary work focuses on learning from up to five billion simulated laser implosion images for optimization of fusion targets used in experiments at the National Ignition Facility (NIF), with the goal of reaching high energy output and robust fusion implosions for stockpile stewardship applications.

LLNL physicist and Cognitive Simulation lead Brian Spears said NIF scientists will use the CS-1 to embed dramatically faster AI-based physics models directly inside Lassen’s simulation codes, resulting in significantly more detailed physics in less time. Additionally, the expanded compute load will allow scientists to merge enormous simulation volume with hyper-precision experimental data, Spears said.

“Pairing the AI power of the CS-1 with the precision simulation of Lassen creates a CogSim computer that kicks open new doors for inertial confinement fusion (ICF) experiments at the National Ignition Facility,” Spears said “Now, we can combine billions of simulated images with NIF’s amazing X-ray and neutron camera output to build improved predictions of future fusion designs. And, we’re pretty sure we’re just scratching the surface – giving ourselves a sneak peek at what future AI-accelerated HPC platforms can deliver and what we will demand of them.”

To ensure a successful integration, LLNL and Cerebras are engaging in an Artificial Intelligence Center of Excellence (AICoE) over the coming years to determine the optimal parameters that will allow cognitive simulation to work with the Lab’s workloads. Depending on the results, LLNL could add more CS-1 systems, both to Lassen and other supercomputing platforms.

“I’m super excited,” said Van Essen, who is leading the AICoE effort. “This is why we’re here, to do this kind of science. I’m a computer architect by training, so the opportunity to build this kind of system and be the first one to deploy these things at this scale is absolutely invigorating. Integrating and coupling it into a system like Lassen gives us a really unique opportunity to be the first to explore this kind of framework.”

About Lawrence Livermore National Laboratory 

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation’s most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy’s National Nuclear Security Administration.


Source: Lawrence Livermore National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire