LLNL Team Explores Electric Grid Modernization via HPC

January 28, 2019

Jan. 28, 2019 — A Lawrence Livermore National Laboratory (LLNL) team has successfully deployed a widely used power distribution grid simulation software on a high-performance computing (HPC) system, demonstrating substantial speedups and taking a key step toward creating a commercial tool that utilities could use to modernize the grid.

Following the successful deployment of a widely used power distribution grid simulation software on a high-performance computing system, a team led by Lawrence Livermore National Laboratory Associate Program Leader in Energy Infrastructure Liang Min (left, with researcher Philip Top) will move on to perform transmission and distribution co-simulation using HELICS, a tool developed by the Department of Energy’s Grid Modernization Lab Consortium. Photo by Randy Wong/LLNL

Partnering with power management company Eaton to use its CYME software on LLNL’s HPC Quartz system, researchers were able to run thousands of simulations in parallel across 100 core computations. This was accomplished faster than previously possible, which could enable utility companies to better plan energy distribution and simulate the impact of renewable energy resources on the entire electrical grid.

“Essentially, we showed we can run 100 circuits in parallel, and it will take the same time as a single circuit,” LLNL researcher Vaibhav Donde said. “But 100 is not a magic number. We have much more capability than that at the Lab, so we can run thousands or maybe more of those scenarios in parallel and achieve a similar order of performance. It opens up the possibility of what we can do in the future and may transform how utilities plan the future grid.”

A project of this scale always poses a set of unique challenges, researchers said. It required creative solutions by Livermore Computing HPC and Engineering Software Toolkit groups to host various elements of the CYME software.

The results mean that a utility company as large as Southern California Edison, for example, would be able to run simulations on the entire grid and multiple scenarios at the same time using existing computational techniques and high-performance computing, which hasn’t been achieved before, Donde said.

For California and Hawaii to reach state mandates of 100 percent renewable energy by 2045, Donde said, utility companies will need to run various renewable energy scenarios on a utility-scale distribution network. This work will require the co-simulation and analysis of transmission and distribution systems, which has been largely infeasible due to the challenges in computational scaling and lack of computational resources.

The successful demonstration marks the first phase of a Department of Energy Technology Commercialization Fund (TCF) project focusing on implementing power transmission and distribution grid simulation in a co-simulation framework. The goal is to take the software to market for utility companies, enabling them to see how various, widespread renewable energies such as solar or wind power might impact the overall electrical grid. The two-year project began in late 2017.

“Utilities have been looking for more advanced planning tools to help them better evaluate the impact of distributed energy resources on the operation of bulk systems,” said Eaton Corporation’s Senior Specialist and Grid Intelligence Theme Leader Wei Ren, who is providing technical support and managing the project for Eaton. “By pairing Eaton’s CYME software with the newest simulation/computation technology developed by LLNL, utilities can conduct hosting capacity analysis and system impact studies with greater accuracy and speed, driving greater adoption of renewables in power systems. We see our collaboration with LLNL as providing a key advantage for utility customers.”

The grid industry traditionally has modeled transmission and distribution grids separately because electricity has historically flowed in one direction, from transmission lines to consumers. But as renewables are increasingly integrated into the greater grid, simulating the transmission and distribution grids together has become essential to predicting reliability and safety.

Building on the computational enhancement the team achieved with CYME, the team will move on to performing transmission and distribution co-simulation using HELICS, a tool developed by the Department of Energy’s Grid Modernization Lab Consortium (GMLC), as well as the electrical power transmission grid simulator GridDyn, developed by LLNL. It will be the first time HELICS will be used with a commercial distribution grid simulation software in a co-simulation environment, researchers said.

“We will see significant increasing deployment of distributed energy resources at distribution system such as solar photovoltaics, demand response and electric vehicles, as well as new sensors, controls and communication networks configured to accommodate distributed energy resources,” said Liang Min, LLNL associate program leader in energy infrastructure and HELICS co-project principal investigator. “Future grid will be an automated system with two-way flow of electricity and information between power plants and consumers—and all points in between. How we co-analyze the transmission-distribution infrastructure is very critical. The outcome from this project and associated projects will give utilities and the general public a way to analyze what the future grid will look like.”

The GMLC was established to bring together leading experts, technologies and resources to collaborate on the goal of modernizing the nation’s grid and includes a dozen participating national laboratories.

Other collaborators on the GMLC HELICS project include Pacific Northwest National Laboratory and the National Renewable Energy Laboratory.


Source: LLNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire