LLNL Team Wins SC21 Reproducibility Advancement Award for Approximation Framework

November 18, 2021

ST. LOUIS, Nov. 18, 2021 — A suite developed by a Lawrence Livermore National Laboratory (LLNL) team to simplify evaluation of approximation techniques for scientific applications has won the first-ever Best Reproducibility Advancement Award at the 2021 International Conference for High Performance Computing, Networking, Storage and Analysis (SC21).

Newly instituted by the conference, the award recognizes outstanding efforts in advancing transparency and reproducibility of methods for high performance computing (HPC). Conference organizers presented the inaugural award to the LLNL researchers for a paper describing their High Performance Approximate Computing (HPAC) framework, which allows users to easily explore the accuracy and performance trade-off of various approximation techniques on OpenMP HPC applications.

“We’re quite honored to be receiving the very first SC Best Reproducibility Advancement award,” said principal investigator Harshitha Menon, a computer scientist in LLNL’s Center for Applied Scientific Computing. “SC has been a pioneer in the reproducibility effort, so getting an award in this field at SC is very exciting. It speaks to the importance that SC gives to reproducibility and transparency in reproducing results.”

As computing reaches the limits of Moore’s Law — the concept that processing speed doubles about every two years — researchers are exploring new paradigms for increasing performance in HPC. While approximate computing – techniques that produce results that are “almost correct”— can substantially improve performance, adoption has been limited for scientific applications due to strict accuracy requirements, Menon explained.

The uncertainty and hesitancy of scientists to rely on the end results necessitates a better understanding of the performance and accuracy tradeoff in approximation and ensure methods used for evaluation are reproducible, researchers said.

“Approximate computing has been studied for many years and it has gotten some traction over the past decade, but most of the current solutions are more of an ad hoc solution, and this has resulted into implementations that are lacking,” said lead author and LLNL postdoctoral researcher Konstantinos (Dinos) Parasyris. “In our case, we tried to use state-of-the-art tools, and we delivered a software that can be used by somebody else.”

In designing HPAC, the LLNL team integrated cutting-edge approximation techniques (loop perforation, input/output memorization), with common LLVM/Clang compiler and OpenMP runtime support. By staying close to the OpenMP interface, HPAC makes it simple for users to specify which technique they want to use, annotate an area of the code to try it on and get an initial idea of performance gains, researchers said. Users can compare different approximation techniques and, depending on their application and error tolerance, can make an informed choice about whether techniques are useful to them or not, Menon said.

“The framework provides a way to generate the plots and say, ‘this is the range you get for these particular approximate techniques, and now it’s up to you to pick the suitable error range for your application and maximum speed-up,” Menon said. “There’s a bit of accuracy vs performance tradeoff game we are playing here, so depending on what the user needs, they can go one way or another. Usually, there’s a sweet spot.”

In the paper, the team applied HPAC to eight common HPC benchmarks, finding that the suite provided considerable performance gains for given error thresholds. For example, in the LULESH benchmark — which approximates hydrodynamics equations — they found approximation provides substantial performance gains of up to 1.7 times, due to the reduction of required memory. In an application called leukocyte — which detects and tracks white blood cells in video microscopy of blood vessels — the team discovered that, beyond increasing speed by increasing the number of threads, HPAC provided an additional speed-up of up to 25x at an error threshold of less than 5 percent.

Funded by the Laboratory Directed Research and Development program, HPAC is part of an LLNL “ApproxHPC” project aimed at evaluating approximation techniques and creating tools to improve confidence in approximate computing for scientific applications in the post-Moore’s Law era.

The team is continuing the work by further exploring techniques and improving understanding of error sensitivity. The HPAC software is available on GitHub. Co-authors include LLNL scientists Giorgis Georgakoudis, James Diffenderfer, Ignacio Laguna, Daniel Osei-Kuffuor and Markus Schordan.


Source: LLNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire