Los Alamos Scientists Attack Load Balancing Challenge

May 5, 2018

May 5 — Simulating complex systems on supercomputers requires that scientists get hundreds of thousands, even millions of processor cores working together in parallel. Managing cooperation on this scale is no simple task.

The merger of two equal mass neutron stars (top panels) is simulated using the 3-D code SNSPH, one of the programs used at the Los Alamos National Laboratory’s (LANL) ISTI/ASC Co-Design Summer School. The session draws future scientists to work on interdisciplinary computing challenges that include high-performance computing load-balancing at a cosmic scale. Here, as the two stars merge, their outer edge ejects a spiral (lower left) of neutron-rich material. A single hyper-massive neutron star remains at the center (lower right) in a wide field of ejecta material. Image courtesy of LANL ISTI/ASC Co-Design Summer School.

One challenge is assigning the workload given to each processor core. Unfortunately, complexity isn’t distributed evenly across space and time in real-world systems. For example, in biology, a cell nucleus has far more molecules crammed into a small space than the more dilute, watery cytoplasm that surrounds it. Simulating nuclei therefore requires far more computing power and time than modeling other parts. Such situations lead to a mismatch in which some cores are asked to pull more weight than others.

To solve these load imbalances, Christoph Junghans, a staff scientist at the Department of Energy’s Los Alamos National Laboratory (LANL), and his colleagues are developing algorithms with many applications across high-performance computing (HPC).

“If you’re doing any kind of parallel simulation, and you have a bit of imbalance, all the other cores have to wait for the slowest one,” Junghans says, a problem that compounds as the computing system’s size grows. “The bigger you go on scale, the more these tiny imbalances matter.” On a system like LANL’s Trinity supercomputer up to 999,999 cores could idle, waiting on a single one to complete a task.

To work around these imbalances, scientists must devise ways to break apart, or decompose, a problem’s most complex components into smaller portions. Multiple processors can then tackle those subdomains.

The work could help researchers move toward using exascale computers that can perform one billion billion calculations per second, or one exaflops, efficiently. Though not yet available, the Department of Energy is developing such machines, which would include 100 times more cores than are found in most current supercomputers. Using a process known as co-design, teams of researchers are seeking ways to devise hardware and software together so that current supercomputers and future exascale systems carry out complex calculations as efficiently as possible. Fixing load imbalance is part and parcel of co-design.

“Everybody is trying to find out where the problems would lie in running simulations and calculations on a super big [machine] that nobody has seen before,” says Junghans, deputy leader of LANL’s co-design team. Fixing load imbalances could make it easier to simulate various physical phenomena such as turbulent flows and materials at a range of scales, from watery biological solutions to plastics and metals.

Junghans’ collaborators include researchers from the Max Planck Institute for Polymer Research (MPI-P) in Mainz, Germany, led by Horacio Vargas Guzman. One approach, pioneered at MPI-P by Kurt Kremer’s group, models complex mixtures of molecules using the adaptive resolution scheme, or AdResS. This method divides simulations into areas of high- and low-resolution, based on how much information and complexity is needed in each area. AdResS is useful for these problems, but such a scheme is “especially prone to this load imbalance,” Junghans says.

Junghans and his MPI-P colleagues developed a new approach – called the heterogeneous spatial domain decomposition algorithm, or HeSpaDDA – that takes this process a step further. It assesses those low- and high-resolution areas and rearranges them to distribute the processing workload. The researchers tested it in two different simulations modeled with AdResS. In one case, they examined the protein ubiquitin’s behavior in water. They also used this algorithm combination to study a model fluid system with two phases (known as a Lennard-Jones binary fluid). The combination of HeSpaDDA and AdResS sped up these simulations by up to 150 percent.

These molecular dynamics simulations are important for advances in the areas of biomedicine, drug development, biomembranes, fluid mechanics, crystal growth, and polymer research. They reported their results in November 2017 in the journal Physical Review E.

Junghans and colleagues from LANL have also worked to solve load imbalances that arise in simulations of other types of matter. For example, they have developed an algorithm that redistributes the simulation workload in the heterogeneous multiscale method, which is useful for modeling solid, metallic systems. This technique could be used to simulate a shock wave traveling through metal, Junghans says.

Unlike the adaptive resolution method, which breaks up simulations into cube-like subdomains, the heterogeneous multiscale method constructs a mesh-like structure around the modeled system. As calculations at various points in the mesh progress, the algorithm divides the complex domain into more manageable chunks. Like adaptive resolution, this method can still have load imbalances, Junghans notes.

Load imbalances also show up on a cosmic scale. At the Supercomputing 2016 Conference, or SC16, researchers showed how they solved load imbalances while simulating a binary star system similar to that detected by LIGO, the Laser Interferometer Gravitational-Wave Observatory. That work involved a method called smooth particle hydrodynamics. The scientists involved were Ph.D. students from LANL’s ISTI/ASC co-design summer school, which brings together future scientists to work on interdisciplinary computing challenges. Junghans and his LANL colleague Robert Pavel co-lead the program.

Co-design has been a big focus of the DOE’s Advanced Scientific Computing Research (ASCR) program in the run-up to exascale HPC. “For us, co-design basically means looking at a problem, and the algorithms to solve that problem, and the hardware,” Junghans says, and answering this question: “Where can we change or modify the algorithms so that we can solve problems on new hardware?”

At the moment, Junghans and his colleagues are working on simulations that use hundreds of processors, though they plan to scale that up significantly. “We have to fix problems at a smaller scale before we’re ready” to move onward, he says. “This will solve one issue, but when you scale up, there will be other problems.”

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security LLC for the Department of Energy’s National Nuclear Security Administration.


Source: ASCR/LANL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

U.S. Quantum Director Charles Tahan Calls for NQIA Reauthorization Now

February 29, 2024

(February 29, 2024) Origin stories make the best superhero movies. I am no superhero, but I still remember what my undergraduate thesis advisor said when I told him that I wanted to design quantum computers in graduate s Read more…

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift is propelled by the advent of artificial intelligence (AI), Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure topic called supercomputing, but when it was announced that S Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with technology itself. During this early phase of GenAI technol Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A week earlier a team working with St. Jude Children’s Hospita Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Argonne Aurora Walk About Video

February 27, 2024

In November 2023, Aurora was ranked #2 on the Top 500 list. That ranking was with half of Aurora running the HPL benchmark. It seems after much delay, 2024 will finally be Aurora's time in the spotlight. For those cur Read more…

Royalty-free stock illustration ID: 1988202119

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure t Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A we Read more…

South African Cluster Competition Team Enjoys Big Texas HPC Adventure

February 26, 2024

Texas A&M University's High-Performance Research Computing (HPRC) hosted an elite South African delegation on February 8 - undergraduate computer science (a Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia Wins SC23, But Gets Socked by Microsoft’s AI Chip

November 16, 2023

Nvidia was invisible with a very small booth and limited floor presence, but thanks to its sheer AI dominance, it was a winner at the Supercomputing 2023. Nv Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Royalty-free stock illustration ID: 1675260034

RISC-V Summit: Ghosts of x86 and ARM Linger

November 12, 2023

Editor note: See SC23 RISC-V events at the end of the article At this year's RISC-V Summit, the unofficial motto was "drain the swamp," that is, x86 and Read more…

China Deploys Massive RISC-V Server in Commercial Cloud

November 8, 2023

If the U.S. government intends to curb China's adoption of emerging RISC-V architecture to develop homegrown chips, it may be getting late. Last month, China Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Chinese Company Developing 64-core RISC-V Chip with Tech from U.S.

November 13, 2023

Chinese chip maker SophGo is developing a RISC-V chip based on designs from the U.S. company SiFive, which highlights challenges the U.S. government may face in Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Royalty-free stock illustration ID: 1182444949

Forget Zettascale, Trouble is Brewing in Scaling Exascale Supercomputers

November 14, 2023

In 2021, Intel famously declared its goal to get to zettascale supercomputing by 2027, or scaling today's Exascale computers by 1,000 times. Moving forward t Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire