Los Alamos Scientists Attack Load Balancing Challenge

May 5, 2018

May 5 — Simulating complex systems on supercomputers requires that scientists get hundreds of thousands, even millions of processor cores working together in parallel. Managing cooperation on this scale is no simple task.

The merger of two equal mass neutron stars (top panels) is simulated using the 3-D code SNSPH, one of the programs used at the Los Alamos National Laboratory’s (LANL) ISTI/ASC Co-Design Summer School. The session draws future scientists to work on interdisciplinary computing challenges that include high-performance computing load-balancing at a cosmic scale. Here, as the two stars merge, their outer edge ejects a spiral (lower left) of neutron-rich material. A single hyper-massive neutron star remains at the center (lower right) in a wide field of ejecta material. Image courtesy of LANL ISTI/ASC Co-Design Summer School.

One challenge is assigning the workload given to each processor core. Unfortunately, complexity isn’t distributed evenly across space and time in real-world systems. For example, in biology, a cell nucleus has far more molecules crammed into a small space than the more dilute, watery cytoplasm that surrounds it. Simulating nuclei therefore requires far more computing power and time than modeling other parts. Such situations lead to a mismatch in which some cores are asked to pull more weight than others.

To solve these load imbalances, Christoph Junghans, a staff scientist at the Department of Energy’s Los Alamos National Laboratory (LANL), and his colleagues are developing algorithms with many applications across high-performance computing (HPC).

“If you’re doing any kind of parallel simulation, and you have a bit of imbalance, all the other cores have to wait for the slowest one,” Junghans says, a problem that compounds as the computing system’s size grows. “The bigger you go on scale, the more these tiny imbalances matter.” On a system like LANL’s Trinity supercomputer up to 999,999 cores could idle, waiting on a single one to complete a task.

To work around these imbalances, scientists must devise ways to break apart, or decompose, a problem’s most complex components into smaller portions. Multiple processors can then tackle those subdomains.

The work could help researchers move toward using exascale computers that can perform one billion billion calculations per second, or one exaflops, efficiently. Though not yet available, the Department of Energy is developing such machines, which would include 100 times more cores than are found in most current supercomputers. Using a process known as co-design, teams of researchers are seeking ways to devise hardware and software together so that current supercomputers and future exascale systems carry out complex calculations as efficiently as possible. Fixing load imbalance is part and parcel of co-design.

“Everybody is trying to find out where the problems would lie in running simulations and calculations on a super big [machine] that nobody has seen before,” says Junghans, deputy leader of LANL’s co-design team. Fixing load imbalances could make it easier to simulate various physical phenomena such as turbulent flows and materials at a range of scales, from watery biological solutions to plastics and metals.

Junghans’ collaborators include researchers from the Max Planck Institute for Polymer Research (MPI-P) in Mainz, Germany, led by Horacio Vargas Guzman. One approach, pioneered at MPI-P by Kurt Kremer’s group, models complex mixtures of molecules using the adaptive resolution scheme, or AdResS. This method divides simulations into areas of high- and low-resolution, based on how much information and complexity is needed in each area. AdResS is useful for these problems, but such a scheme is “especially prone to this load imbalance,” Junghans says.

Junghans and his MPI-P colleagues developed a new approach – called the heterogeneous spatial domain decomposition algorithm, or HeSpaDDA – that takes this process a step further. It assesses those low- and high-resolution areas and rearranges them to distribute the processing workload. The researchers tested it in two different simulations modeled with AdResS. In one case, they examined the protein ubiquitin’s behavior in water. They also used this algorithm combination to study a model fluid system with two phases (known as a Lennard-Jones binary fluid). The combination of HeSpaDDA and AdResS sped up these simulations by up to 150 percent.

These molecular dynamics simulations are important for advances in the areas of biomedicine, drug development, biomembranes, fluid mechanics, crystal growth, and polymer research. They reported their results in November 2017 in the journal Physical Review E.

Junghans and colleagues from LANL have also worked to solve load imbalances that arise in simulations of other types of matter. For example, they have developed an algorithm that redistributes the simulation workload in the heterogeneous multiscale method, which is useful for modeling solid, metallic systems. This technique could be used to simulate a shock wave traveling through metal, Junghans says.

Unlike the adaptive resolution method, which breaks up simulations into cube-like subdomains, the heterogeneous multiscale method constructs a mesh-like structure around the modeled system. As calculations at various points in the mesh progress, the algorithm divides the complex domain into more manageable chunks. Like adaptive resolution, this method can still have load imbalances, Junghans notes.

Load imbalances also show up on a cosmic scale. At the Supercomputing 2016 Conference, or SC16, researchers showed how they solved load imbalances while simulating a binary star system similar to that detected by LIGO, the Laser Interferometer Gravitational-Wave Observatory. That work involved a method called smooth particle hydrodynamics. The scientists involved were Ph.D. students from LANL’s ISTI/ASC co-design summer school, which brings together future scientists to work on interdisciplinary computing challenges. Junghans and his LANL colleague Robert Pavel co-lead the program.

Co-design has been a big focus of the DOE’s Advanced Scientific Computing Research (ASCR) program in the run-up to exascale HPC. “For us, co-design basically means looking at a problem, and the algorithms to solve that problem, and the hardware,” Junghans says, and answering this question: “Where can we change or modify the algorithms so that we can solve problems on new hardware?”

At the moment, Junghans and his colleagues are working on simulations that use hundreds of processors, though they plan to scale that up significantly. “We have to fix problems at a smaller scale before we’re ready” to move onward, he says. “This will solve one issue, but when you scale up, there will be other problems.”

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security LLC for the Department of Energy’s National Nuclear Security Administration.


Source: ASCR/LANL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This