LSU Researchers Enter Semifinals for the $5M IBM Watson AI XPRIZE

January 29, 2020

Jan. 29, 2020 — People and pharmaceutical companies around the world are increasingly challenged by antibiotic-resistant bacteria as well as new and rapidly evolving pathogens. The discovery of new drugs, meanwhile, can be a slow and costly process as companies must make sure their drugs are both effective and safe. It currently takes on average 10 years and over $2 billion to create a new drug and get it approved. Now, an interdisciplinary LSU team led by Supratik Mukhopadhyay, associate professor in the Department of Computer Science, and Michal Brylinski, associate professor in the Department of Biological Sciences with a joint appointment in the Center for Computation & Technology, suggests using artificial intelligence (AI), to try to solve this growing problem.

The XPRIZE team visits LSU, meeting with Vice President of Research & Economic Development Sam Bentley (third from left); Michal Brylinski (fourth from left); attorney Patrick McGrew (fifth from left); Supertik Mukhopadhyay (fourth from right); Roopa Dandamudi, XPRIZE project manager (third from right). Image courtesy of LSU Office of Research & Economic Development.

The team, known as Deep Drug, is leveraging deep learning techniques from computer science and vast datasets of known bioactive compounds from biology and chemistry to teach their tool, called eSynth, to invent or pinpoint compounds that should be effective against specific bacteria.

Another aspect is ensuring that the identified compounds are safe. For this purpose, the team is working on an additional module called eToxPred. While clinical toxicological testing of a therapeutic compound to determine safety is time-consuming and expensive, drug companies could use eToxPred to predict which compounds might elicit toxic effects and harm patients. The team is also developing another artificial intelligence-based module called eDrugRes, which allows for examination of the protein-protein interaction network of pathogens to predict susceptibility and/or resistance to known drugs.

The team has so far tested eSynth using 20,408 bioactive compounds for 102 receptor proteins that represent many important drug targets. Deep Drug expects eSynth to reduce the time for preclinical drug discovery and testing from an average of three years to six to eight months.

“We’re integrating enormous amounts of biological data and the data is quite complex and difficult to analyze, which is why we need artificial intelligence,” Michal Brylinski said. “Importantly, we’re doing this without any experiments; it’s simply the AI telling us when to synthesize a new drug. If a certain bacterium is drug-resistant, AI can help us find another drug that could be effective. The only input would be the DNA sequence of a pathogen, and then the AI can figure out what will kill it. Instead of subjecting a lot of people to testing, we can just use a computer.”

“This is an opportunity to try to solve a moon-shot problem, a very hard problem,” Mukhopadhyay said. “For this, we needed an interdisciplinary team. When I happened to see one of Michal’s talks, I said, ‘This is the guy I need.’”

Brylinski’s expertise is in computational microbiology and chemistry.

“I can’t enough emphasize the value of collaboration on this project,” he said. “By myself, I would never be capable of doing something like this, not without AI. At the same time, in order to use AI, computer scientists need to connect with domain scientists to solve real-world problems.”

“This is a large-scale project and something we’ve never done before,” Brylinski continued. “We’re integrating enormous amounts of biological data and the data is quite complex and difficult to analyze, which is why we need artificial intelligence. Importantly, we’re doing this without any experiments; it’s simply the AI telling us when to synthesize a new drug. If a certain bacterium is drug-resistant, AI can help us find another drug that could be effective. The only input would be the DNA sequence of a pathogen, and then the AI can figure out what will kill it. Instead of subjecting a lot of people to testing, we can just use a computer.”

Brylinski compares the team’s use of AI for drug discovery to that of engineers of self-driving cars.

“In cars, the AI gets lots of data from sensors and then has to make decisions about when to stop or when to accelerate,” he said. “We’re doing something very similar. We’re collecting lots of data from experiments to train our AI to be able to make good decisions, whether to synthesize a drug or not, and knowing if a particular drug is going to be effective.”

Computer science graduate student Adam Bess is working with Mukhopadhyay and Brylinski on the Deep Drug project. His undergraduate degree was in both biology and computer science, and he worked for a few years in bioinformatics before coming to LSU last year.

“What I’m the most excited about is creating a toolkit and rich datasets that any researcher can use to do in-depth analysis of different kinds of drugs and bacteria,” Bess said. “Together, we can do more integral science and help each other move this whole project forward.”

The IBM Watson AI XPRIZE is a global competition encouraging teams of researchers to develop powerful applications based on artificial intelligence and demonstrate how humans can collaborate with AIs to tackle some of the world’s greatest challenges. Now a semifinalist, the LSU team will receive a $15,000 milestone award on their way toward the $3 million grand prize, which will be awarded to one of the 10 teams now remaining among the original 147 in 2016. The second and third place teams will receive $1 million and $500,000 respectively.

The top three teams are expected to be announced in February 2020 and present their work at TED2020 in Vancouver, on the theme “Uncharted.”


Source: Elsa Hahne, LSU Office of Research & Economic Development

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire