Machine Learning Technique Could Improve Fusion Energy Outputs

October 9, 2020

Machine-learning techniques, best known for teaching self-driving cars to stop at red lights, may soon help researchers around the world improve their control over the most complicated reaction known to science: nuclear fusion.

Fusion reactions are typically hydrogen atoms heated to form a gaseous cloud called a plasma that releases energy as the particles bang into each other and fuse. Getting these reactions under better control could create huge amounts of environmentally clean energy from nuclear reactors in fusion power plants of the future.

Sandia machine learning and fusion researcher Aidan Thompson considers the future from the shelter of the Sandia “found art” piece titled Starburst. From 1980 to 1986, the structure was the power flow lines and target chamber of PBFA 1, Sandia’s earliest major fusion attempt.

“The connection between machine learning and fusion energy is not obvious,” said Sandia researcher Aidan Thompson, principal investigator for a $2.2 million, three-year DOE Office of Science award to make that connection. “Simply put, we have pioneered machine-learning’s use to improve simulations of the reactor’s wall material as it interacts with the plasma. This has been beyond the scope of atomic-scale simulations of the past.”

The expected result should suggest procedural or structural modifications to improve nuclear energy output, he said.

Modeling nuclear fusion

Machine learning is powerful because it uses mathematical and statistical means to figure out a situation, rather than analyze every piece of data in the desired category. For example, only a small number of dog photos are needed to teach a recognition system the concept of “dogginess”— in other words, “this is a dog” — rather than scanning every dog photo in existence.

Sandia’s machine-learning approach to nuclear fusion is the same, but more complicated.

“It is not a trivial problem to physically observe what is going on within a reactor’s walls as these structures are internally bombarded with hydrogen, helium, deuterium and tritium as parts of a super-heated plasma,” Aidan said.

He described components of the circling plasma striking and altering the composition of the retaining walls, and heavy atoms dislodging from the struck walls and altering the plasma. Reactions take place in nanoseconds, at temperatures as hot as the sun. Trying to modify components using trial and error to improve outcomes is extraordinarily laborious.

Machine-learning algorithms, on the other hand, use computer-generated data without direct measurements from experiments and can yield information that eventually could be used to make plasma interactions with containment-wall material less damaging, and thus improve the overall energy output of fusion reactors.

“There is no other way of getting this information,” Aidan said.

A few atoms predict energy of many

Aidan’s team expects that by using large datasets of quantum-mechanics calculations under extreme conditions as training data, they can build a machine-learning model that predicts the energy of any configuration of atoms.

This model, called a machine-learning interatomic potential, or MLIAP, can be inserted into huge classical molecular dynamics codes such as Sandia’s award-winning LAMMPS, or Large-scale Atomic/Molecular Massively Parallel Simulator, software. In this way, by interrogating only a relatively small number of atoms, they can extend the accuracy of quantum mechanics to the scale of millions of atoms needed to simulate the behavior of fusion energy materials.

“So, why is what we are doing machine learning and not just bookkeeping lots of data? The short answer is, we generate equations from an infinite set of possible variables to build models that are grounded in physics but contain hundreds or thousands of parameters that keep us within range of our target,” Aidan said, defending the reality of the machine-learning process.

One catch is that the accuracy of the MLIAP model depends on the overlap between the training data and the actual atomic environments encountered by the application, Aidan said.

These environments may be various, requiring new training data and alteration of the machine-learning model. Recognizing and adjusting for overlaps is part of the work of the next few years.

“Our model at first will be used to interpret small experiments,” Aidan said. “Conversely, that experimental data will be used to validate our model, which can then be used to make predictions about what is happening in a full-scale fusion reactor.”

The target for giving fusion researchers access to the Sandia machine-learning models to build better fusion reactors is approximately three years, he said.

Team members include researchers from Los Alamos National Laboratory and the University of Tennessee at Knoxville, as well as Sandia researchers Habib Najm, Robert Kolasinski, Mitchell Wood, Julien Tranchida, Khachik Sargsyan, and Mary Alice Cusentino.


Source: Neal Singer, Sandia National Laboratories

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire