MareNostrum 4 Begins Operation

June 29, 2017

BARCELONA, June 29 — The MareNostrum supercomputer is beginning operation and will start executing applications for scientific research. MareNostrum 4, hosted by Barcelona Supercomputing Center, is entirely aimed at generating scientific knowledge and its computer architecture has been called ‘the most diverse and interesting in the world’ by international experts. The Spanish Ministry of Economy, Industry and Competitiveness has funded the purchase of the supercomputer, whose installation cost €34 million in total.

11.1 Petaflops of processing power

MareNostrum will provide 11.1 Petaflops of processing power – that is, the capacity to perform 11.1 x (1015) operations per second– to scientific production. This is the capacity of the general-purpose cluster, the largest and most powerful part of the supercomputer, which will be increased thanks to the installation of three new, smaller-scale clusters, featuring emerging technologies, over the next few months. The capacity of 11.1 Petaflops is 10 times greater than that of MareNostrum 3, which was installed between 2012 and 2013.

According to the Top500 ranking published on 19 June, the MareNostrum 4 supercomputer’s general-purpose cluster is the third most powerful one in Europe and the thirteenth in the world. The Top500 list is based on how quickly supercomputers execute the high-performance linpack benchmark. 

A tool of great value for science

Supercomputers are used for basic and applied research thanks to their ability to perform large calculations, execute large simulations and analyse large amounts of data. Today, they are used in almost all scientific disciplines, from astrophysics and materials physics to biomedicine, and are used in engineering and industry.

During its first four months of operation, MareNostrum 4 will be used for research projects on climate change, gravitational waves, a vaccination against AIDS, new radiation treatments to fight cancer and simulations relating to the production of fusion energy, among other areas.

Access via scientific committees

MareNostrum 4 is available to all scientists in Europe via a selection process managed by scientific committees. For the chance to use the supercomputer, researchers must submit a request to the Spanish Supercomputing Network (RES, according to its initials in Spanish) – which provides access to 16% of the computing hours available on the machine – or to PRACE (the Partnership for Advanced Computing in Europe) – which manages access to 80% of its computing hours. The remaining 4% is reserved for use by BSC researchers. The MareNostrum 4 supercomputer is designated as a Special Scientific/Technical Infrastructure Facility by the Spanish Ministry of Economy, Industry and Competitiveness.

Barcelona Supercomputing Center

Barcelona Supercomputing Center is the leading supercomputing centre in Spain. It specialises in High Performance Computing and its mission is twofold: to offer supercomputing facilities and services to Spanish and European scientists, and to create knowledge and technology to be transferred to society.

Barcelona Supercomputing Center employs 500 staff, of whom 27 form part of the Operations Department, which manages the supercomputer, and 400 who work in research across a wide range of areas. The Computer Sciences Department, which works to influence how future supercomputers will be built, programmed and used, is the centre’s largest department. Research is also carried out in the fields of personalised medicine and drug discovery, as well as climate change, air quality and engineering.

BSC is a Severo Ochoa Centre of Excellence and a leadership-level (Tier-0) member of the PRACE infrastructure, as well as managing the Spanish Supercomputing Network. It was created in 2005 and is a consortium formed by the Spanish Government Ministry of Economy, Industry and Competitiveness (60%), the Catalan Government Department of Enterprise and Knowledge (30%) and the Univeristat Politècnica de Catalunya (UPC) (10%).

MareNostrum 4: technical summary

MareNostrum 4 has been dubbed the most interesting supercomputer in the world thanks to the heterogeneity of the architecture it will include once installation of the supercomputer is complete. Its total speed will be 13.7 Petaflops. The supercomputer includes two separate parts: a general-purpose block and a block featuring emerging technologies. It has 5 storage racks with the capacity to store 14 Petabytes (14 million Gigabytes) of data. A high-speed Omnipath network connects all the components in the supercomputer to one another.

The general-purpose block has 48 racks with 3,456 nodes. Each node has two Intel Xeon Platinum chips, each with 24 processors, amounting to a total of 165,888 processors and a main memory of 390 Terabytes. Its peak performance is 11.15 Petaflops. While its performance is 10 times greater than its predecessor, MareNostrum 3, its energy consumption will only increase by 30% to 1.3 MW per year.

The block of emerging technologies is formed of clusters of three different technologies, which will be incorporated and updated as they become available on the market. These technologies are currently being developed in the United States and Japan to speed up the arrival of the new generation of pre-exascale supercomputers. They are as follows:

·     Cluster comprising IBM POWER9 and NVIDIA Volta GPUs, with a computational capacity of over 1.5 Petaflops. IBM and NVIDIA will use these processors for the Summit and Sierra supercomputers that the US Department of Energy has ordered for its Oak Ridge and Lawrence Livermore National Laboratories.

·     Cluster formed of Intel Knights Hill (KNH) processors, with a computational capacity of over 0.5 Petaflops. These are the same processors as those to be used in the Theta and Aurora supercomputers that the US Department of Energy has ordered for the Argonne National Laboratory.

·     Cluster composed of 64-bit ARMv8 processors in a prototype machine with a computational capacity of over 0.5 Petaflops. This cluster will use the cutting-edge technology of the Japanese supercomputer Post-K.

The aim of gradually incorporating these emerging technologies into MareNostrum 4 is to allow BSC to experiment with what are expected to be the most advanced technological developments over the next few years and evaluate their suitability for future iterations of MareNostrum.

MareNostrum 4 has a disk storage capacity of 14 Petabytes and is connected to BSC’s big data facilities, which have a total capacity of 24.6 Petabytes. Like its predecessors, MareNostrum 4 will also be connected to European research centres and European universities via the RedIris and Géant networks.

Links to videos and photos (available until 10 July)

Link to MareNostrum 4: Replacing MareNostrum 3 with MareNostrum 4 timelapse video: bsc.es/MN4-timelapse

Link to MareNostrum 4, technical specification video: bsc.es/MN4-sketch

Photos of MareNostrum 4 in high and low resolution: bsc.es/MN4-fotos


Source: Barcelona Supercomputing Center

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This