Max Planck Society Recognizes AI Innovations in Mathematics, Microscopy, and HPC

September 12, 2024

Sept. 12, 2024 — Artificial intelligence and computer science are driving developments in many areas of society – including in scientific research. This has prompted the Max Planck Society and the Alexander von Humboldt Foundation to honor outstanding achievements in the use of algorithms in mathematics, microscopy and climate research in 2024: The Max Planck-Humboldt Research Award, endowed with 1.5 million euros, goes to Geordie Williamson, Professor at the University of Sydney. Williamson uses artificial intelligence (AI) for his fundamental work in mathematics. Meanwhile, Max Planck Humboldt Medals go to Laura Waller, Professor at the University of California, Berkeley, for her work in computational microscopy, and to Torsten Hoefler, Professor at ETH Zurich, for the introduction of AI in high-performance computing, for example in climate research. The awards will be presented on December 3 in Berlin.

Geordie Williamson (University of Sydney), Laura Waller (University of California Berkeley) and Torsten Hoefler (ETH Zurich) (from left) are honoured by the Max Planck Society and the Alexander von Humboldt Foundation. Credit: Swen Pförtner/MPG.

Scientists today use artificial intelligence in many areas, especially in the natural sciences, for tasks such as analyzing data or images. In theoretical mathematics, on the other hand, AI has barely been used thus far. Now Geordie Williamson is aiming to change that. In his previous work he has already used artificial neural networks, which can guide mathematical intuition by drawing attention to previously unrecognised relationships in a large number of mathematical objects. Artificial intelligence can also help to generate examples or counterexamples that prove or disprove mathematical assumptions.

Although artificial neural networks can recognize patterns in large data sets very efficiently and effectively, they know nothing about mathematics. It therefore remains the task of mathematicians to filter out the sensible proposals from AI, to interpret them and, in the case of new assumptions about mathematical relationships, to prove or disprove them. Geordie Williamson wants to optimize the possibilities of using AI in theoretical mathematics in the collaboration made possible by the Max Planck-Humboldt Research Award. To this end, he will work closely with researchers from the University of Bonn and the Max Planck Institute for Mathematics in Bonn, where he will also spend two periods of several months each.

Connecting the Countable with Geometry

Geordie Williamson’s previous research work was characterized, among other things, by the fact that he brought together different fields such as combinatorics and geometry. In simple terms, combinatorics can be understood as the branch of mathematics that is dedicated to everything that can be counted; it includes subjects such as graph theory and discrete mathematics. Geometry is about objects in spaces, i.e. straight lines, surfaces, and solids, just like in school maths.

Both sub-areas come together in a simple example when the intersection points of a curve and a surface are to be counted. Geordie Williamson has now opened up ways of solving combinatorics problems with geometric tools, for which purpose he first had to develop a kind of common mathematical language for the two fields so that combinatorial problems could be worked on in geometry, but geometry could also be translated into combinatorics. With this approach, Geordie Williamson has proved or disproved various assumptions that mathematicians have been working on intensively, but to no avail, for a long time.

For example, Williamson in collaboration with Ben Elias from the University of Oregon provided a general proof of an important conjecture in mathematics relating to Kazhdan-Lusztig polynomials. The work of David Kazhdan and George Lusztig provided precise recipes for building up certain mathematical objects out of constituent pieces. Imagine a recipe that contains a list of ingredients and instructions on what to do with them, but the recipe does not specify the quantities. Kazhdan and Lusztig hypothesised that there are polynomials in mathematics for such cases, from which the quantities for the recipe can be determined.

Polynomials are formulae that are familiar to us in their simple form from the binomial formulae we study in school. Geordie Williamson has proven this assumption, for which evidence had previously been sought in vain for a long time. His methods, borrowed from geometry, also make it much easier to solve the polynomials that provide the unknown data and to analyse them in greater depth.

Solving Knot Theory Problems with the Help of AI

As part of the collaboration with researchers from the University of Bonn and the Max Planck Institute for Mathematics, all possible as a result of the award, Williamson will tackle various mathematical problems with the help of artificial intelligence. Amongst the problems that they will tackle is a problem in knot theory. In simple terms, this can be explained by the fact that it is often impossible to recognize whether knotted structures, such as in a string, are actually knotted. What this means is: does the knot remain intact when you pull on the ends of the cord or does it unravel?

One aim of the project is to identify these cases in a simple way so that these uninteresting cases can be quickly filtered out and the researchers can focus on the real knots. AI is set to provide support here and assistance in gaining new mathematical insights.

Geordie Williamson studied at the University of Sydney and received his doctorate from the University of Freiburg in 2008. He then conducted research at Oxford University until 2011 and headed a research group at the Max Planck Institute for Mathematics until 2016. After other shorter stints at the Hausdorff Centre for Mathematics in Bonn and at the Institute for Advanced Study, Princeton he was appointed Professor at the University of Sydney in 2017. He serves as the founding Director of the Sydney Mathematical Research Institute. Geordie Williamson is a Fellow of the British Royal Society and the Australian Academy of Science.

Laura Waller – a Pioneer of Computational Microscopy

Laura Waller, Professor of Electrical Engineering and Computer Sciences at the University of California, Berkeley, uses algorithms – some of which are based on machine learning – to improve microscopy, particularly of biological samples, as well as the imaging of astronomical objects. This pioneer of computational microscopy is combining computer science and simple instruments to achieve such things as making more details visible and creating three-dimensional images or videos.

Among other things, Laura Waller has further developed the phase contrast microscope, which can also image transparent objects. She has formulated algorithms that determine quantitative information about the phase of light waves – in simple terms, this is the displacement of light waves relative to each other– from a few images with illumination from different angles. The resulting images not only better visualise the shape of cells, but also allow better cell tracking.

In another invention, the DiffuserCam, Waller places an uneven plastic plate on a light sensor, which scatters the incoming light. Very detailed 3D images can then be reconstructed from a single sensor reading, with applications in microscopy and astronomical imaging. The technology also makes it possible to create high-speed videos with low-speed camera equipment.

Torsten Hoefler Makes High-Performance Computers and AI More Efficient

Torsten Hoefler, Professor at ETH Zurich, is being honored with a Max Planck-Humboldt Medal for his research in the field of computer science. His work concentrates on increasing the efficiency of algorithms, particularly for applications in high-performance computing and artificial intelligence. Hoefler’s approaches have led to substantial advancements in various fields. For example, his team has found ways to considerably speed up very complex computational problems such as quantum simulations, which are important to the semiconductor industry.

Hoefler has also developed methods that optimize machine learning algorithms and significantly improve their practical applicability. A particularly remarkable breakthrough for Hoefler and his team was the processing of large amounts of data for climate simulations. Using neural networks, the researchers have compressed this data to a thousandth of its original volume without sacrificing fidelity. By skillfully combining and optimizing hardware, software, and algorithms, Hoefler has increased the efficiency of computer systems by a factor of up to one thousand. His work makes a significant contribution to the further development of artificial intelligence and opens up new areas of application in computer science.

About the Award

The Max Planck Society and the Alexander von Humboldt Foundation present the Max Planck-Humboldt Research Award, along with 1.5 million euros in prize money, to a researcher from abroad. 80,000 euros in personal prize money is also awarded. The focus here is on personalities whose work is characterized by outstanding potential for the future. The prize is intended to attract particularly innovative scientists working abroad to spend a fixed period of time at a German higher education institution or research facility. The Federal Ministry of Education and Research provides the funding for the award.

The focus of the award alternates each year between natural and engineering sciences, life sciences, humanities and social sciences. In addition, one or two further individuals may be nominated and awarded the Max Planck-Humboldt Medal. This is awarded along with 60,000 euros in prize money.


Source: Max Planck Society

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AMD Announces Flurry of New Chips

October 10, 2024

AMD today announced several new chips including its newest Instinct GPU — the MI325X — as it chases Nvidia. Other new devices announced at the company event in San Francisco included the 5th Gen AMD EPYC processors, Read more…

NSF Grants $107,600 to English Professors to Research Aurora Supercomputer

October 9, 2024

The National Science Foundation has granted $107,600 to English professors at US universities to unearth the mysteries of the Aurora supercomputer. The two-year grant recipients will write up what the Aurora supercompute Read more…

VAST Looks Inward, Outward for An AI Edge

October 9, 2024

There’s no single best way to respond to the explosion of data and AI. Sometimes you need to bring everything into your own unified platform. Other times, you lean on friends and neighbors to chart a way forward. Those Read more…

Google Reports Progress on Quantum Devices beyond Supercomputer Capability

October 9, 2024

A Google-led team of researchers has presented more evidence that it’s possible to run productive circuits on today’s near-term intermediate scale quantum devices that are beyond the reach of classical computing. � Read more…

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it would build the supercomputer with Nvidia's Blackwell GPUs an Read more…

ZLUDA Takes Third Wack as a CUDA Emulator

October 7, 2024

The ZLUDA CUDA emulator is back in its third invocation. At one point, the project was quietly funded by AMD and demonstrated the ability to run unmodified CUDA applications with near-native performance on AMD GPUs. Cons Read more…

NSF Grants $107,600 to English Professors to Research Aurora Supercomputer

October 9, 2024

The National Science Foundation has granted $107,600 to English professors at US universities to unearth the mysteries of the Aurora supercomputer. The two-year Read more…

VAST Looks Inward, Outward for An AI Edge

October 9, 2024

There’s no single best way to respond to the explosion of data and AI. Sometimes you need to bring everything into your own unified platform. Other times, you Read more…

Google Reports Progress on Quantum Devices beyond Supercomputer Capability

October 9, 2024

A Google-led team of researchers has presented more evidence that it’s possible to run productive circuits on today’s near-term intermediate scale quantum d Read more…

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it w Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago this week emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whateve Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire