Michigan Engineering Researchers Receive $16.7M for Advanced Computing Projects

July 25, 2018

Transforming and democratizing chip design. Engineering a reconfigurable computer.  Improving wireless communication.

An earlier product of the Michigan Integrated Circuits Lab. Photo: Joseph Xu/Michigan Engineering

These are three of the five projects Michigan Engineering researchers have received more than $16.7 million to pursue through a Defense Advanced Research Projects Agency initiative to push microelectronics beyond Moore’s Law—the transistor scaling that has allowed for 50 years of rapid progress in electronics. DARPA’s Electronics Resurgence Initiative is a $75 million effort to jumpstart innovation in the field.

“The microelectronics community is facing an array of long foreseen obstacles to Moore’s Law,” according to DARPA. “Current economic, geopolitical, and physics-based complications make the future of the electronics industry uniquely interesting at this moment.”

The projects Michigan Engineering leads are:

An open-source hardware design tool: In a $6.5 million project that could revolutionize and democratize designing hardware devices, researchers will work to create an open-source hardware compiler. They aim to reduce the six-month process of hand-designing analog circuits to a dramatically faster and automated 24-hour routine. (Of the total funding $4.1 million remains at U-M.)

“The goal is to do for hardware what open-source compilers have done for software,” said David Wentzloff, associate professor of electrical and computer engineering and primary investigator on the project. “Someone could download a free suite of tools, specify the design of virtually any widget, and have that design produced in 24 hours without any knowledge of hardware.”

The project is titled Fully-Autonomous System on Chip (SoC) Synthesis using Customizable Cell-Based Synthesizable Analog Circuits. In addition to Wentzloff, this projects involves David Blaauw, Ronald Dreslinski, and Dennis Sylvester, all U-M professors of electrical engineering and computer science; Ben Calhoun, University of Virginia professor of electrical and computer engineering; and Arm Holdings, maker of ARM processors. Read more about this project.

A reconfigurable computer: Ron Dreslinski, assistant professor of computer science and engineering, leads a $9.5 million project to develop a computing system that allows software to adapt the hardware at runtime, making changes in processor interconnect speeds, connectivity, and arbitration policies. (Of the total funding, $5.8 million stays at U-M.) It would also allow the software to choose the correct ratio of processing elements to on-chip memory, and powergate the remaining processors to save power. The hardware can also be configured to support on-chip memory as a cache, scratchpad, or queue based allocation/replacement, Dreslinksi said.

The work has applications in image, video and text understanding, as well as analyzing sparse data.

“Current systems like GPUs offer a very efficient platform for regular workloads. . They, however, don’t perform well for workloads that are irregular,” Dreslinksi said. “To give an example of a use, imagine processing a graph of all the connections on Twitter. Most people are connected to a only small set of individuals, leading to a sparse dataset. If the hardware is configured to process the workload and suddenly starts processing Justin Bieber, the amount of density changes. (He has many more followers than I do.) The software can detect this imbalance and reconfigure the hardware to more effectively use the cache resources as the workload changed.”

Researchers from the University of Edinburgh, Arizona State University, and Arm are contributing. Read more about this project.

U-M researchers are co-investigators on three other projects:

A new hybrid chip that can change its own wiring: Hun-Seok Kim, assistant professor of electrical and computer engineering, will lead a $5.2 million sub-project to develop a new type of system-on-chip that combines the adaptability of general purpose processors with the efficiency of specialized processors, allowing for demanding applications such as highly intelligent wireless communication systems used in radar and swarms of autonomous devices. This is part of a $17 million project led by Arizona State University. The project is titled Domain-Focused Advanced Software-Reconfigurable Heterogeneous System on Chip. Read more about this project.

Testing next-generation hardware design tools: To fuel innovation among small teams and startups and allow them to design and produce complex chips with ease, U-M researchers will participate in a national program that aims to build free, open-source electronic design automation tools. The U-M team will act as internal design advisors on the project, named “OpenROAD (Foundations and Realization of Open and Accessible Design).” At U-M, the project is led by Dennis Sylvester, professor of electrical and computer engineering. U-M receives $1.6 million. Read more about this project.

An additional sub-project will be led at U-M by Scott Mahlke, professor of electrical and computer engineering. Details were not yet available.


Source: Nicole Casal Moore, University of Michigan

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire