Microlaser Chip Adds New Dimensions to Quantum Communication

November 22, 2022

Nov. 22, 2022 — Researchers at Penn Engineering have created a chip that outstrips the security and robustness of existing quantum communications hardware. Their technology communicates in “qudits,” doubling the quantum information space of any previous on-chip laser.

Liang Feng, Professor in the Departments of Materials Science and Engineering (MSE) and Electrical Systems and Engineering (ESE), along with MSE postdoctoral fellow Zhifeng Zhang and ESE Ph.D. student Haoqi Zhao, debuted the technology in a recent study published in NatureThe group worked in collaboration with scientists from the Polytechnic University of Milan, the Institute for Cross-Disciplinary Physics and Complex Systems, Duke University and the City University of New York (CUNY).

With only two levels of superposition, the qubits used in today’s quantum communication technologies have limited storage space and low tolerance for interference. The Feng Lab’s hyperdimensional microlaser (above) generates qudits, photons with four simultaneous levels of information. The increase in dimension makes for robust quantum communication technology better suited for real-world applications.

Bits, Qubits and Qudits

While non-quantum chips store, transmit and compute data using bits, state-of-the-art quantum devices use qubits. Bits can be 1s or 0s, while qubits are units of digital information capable of being both 1 and 0 at the same time. In quantum mechanics, this state of simultaneity is called “superposition.”

A quantum bit in a state of superposition greater than two levels is called a qudit to signal these additional dimensions.

“In classical communications,” says Feng, “a laser can emit a pulse coded as either 1 or 0. These pulses can easily be cloned by an interceptor looking to steal information and are therefore not very secure. In quantum communications with qubits, the pulse can have any superposition state between 1 and 0. Superposition makes it so a quantum pulse cannot be copied. Unlike algorithmic encryption, which blocks hackers using complex math, quantum cryptography is a physical system that keeps information secure.”

Qubits, however, aren’t perfect. With only two levels of superposition, qubits have limited storage space and low tolerance for interference.

The Feng Lab device’s four-level qudits enable significant advances in quantum cryptography, raising the maximum secrete key rate for information exchange from 1 bit per pulse to 2 bits per pulse. The device offers four levels of superposition and opens the door to further increases in dimension.

“The biggest challenge,” says Zhang, “was the complexity and non-scalability of the standard setup. We already knew how to generate these four-level systems, but it required a lab and many different optical tools to control all the parameters associated with the increase in dimension. Our goal was to achieve this on a single chip. And that’s exactly what we did.”

 The Physics of Cybersecurity

Quantum communication uses photons in tightly controlled states of superposition. Properties such as location, momentum, polarization and spin exist as multiplicities at the quantum level, each of which is governed by probabilities. These probabilities describe the likelihood of a quantum system—an atom, a particle, a wave—taking on a single attribute when measured.

In other words, quantum systems are neither here nor there. They are both here and there. It is only the act of observation—detecting, looking, measuring—that causes a quantum system to take on a fixed property. Like a subatomic game of Statues, quantum superpositions take on a single state as soon as they are observed, making it impossible to intercept them without detection or copy them.

Liang Feng, UPenn Professor in the Departments of Materials Science and Engineering (MSE) and Electrical Systems and Engineering (ESE).

The hyperdimensional spin-orbit microlaser builds on the team’s earlier work with vortex microlasers, which sensitively tune the orbital angular momentum (OAM) of photons. The most recent device upgrades the capabilities of the previous laser by adding another level of command over photonic spin.

This additional level of control—being able to manipulate and couple OAM and spin—is the breakthrough that allowed them to achieve a four-level system.

The difficulty of controlling all these parameters at once is what had been hindering qudit generation in integrated photonics and represents the major experimental accomplishment of the team’s work.

“Think of the quantum states of our photon as two planets stacked on top of each other,” says Zhao. “Before, we only had information about these planets’ latitude. With that, we could create a maximum of two levels of superposition. We didn’t have enough information to stack them into four. Now, we have longitude as well. This is the information we need to manipulate photons in a coupled way and achieve dimensional increase. We are coordinating each planet’s rotation and spin and holding the two planets in strategic relation to each other.”

Quantum Cryptography with Alice, Bob and Eve

Quantum cryptography relies on superposition as a tamper-evident seal. In a popular cryptography protocol known as Quantum Key Distribution (QKD), randomly generated quantum states are sent back and forth between sender and receiver to test the security of a communications channel.

If sender and receiver (always Alice and Bob in the storyworld of cryptography) discover a certain amount of discrepancy between their messages, they know that someone has attempted to intercept their message. But, if the transmission remains mostly intact, Alice and Bob understand the channel to be safe and use the quantum transmission as a key for encrypted messages.

How does this improve on non-quantum communication security? If we imagine the photon as a sphere rotating upwards, we can get a rough idea of how a photon might classically encode the binary digit 1. If we imagine it rotating downwards, we understand 0.

When Alice sends classical photons coded in bits, Eve the eavesdropper can steal, copy and replace them without Alice or Bob realizing. Even if Eve cannot decrypt the data she has stolen, she may be squirreling it away for a near future when advances in computing technology might allow her to break through.

Quantum communication adds a stronger layer of security. If we imagine the photon as a sphere rotating upwards and downwards at the same time, coding 1 and 0 simultaneously, we get an idea of how a qubit maintains dimension in its quantum state.

When Eve tries to steal, copy and replace the qubit, her ability to capture the information will be compromised and her tampering will be apparent in the loss of superposition. Alice and Bob will know the channel is not secure and will not use a security key until they can prove that Eve has not intercepted it. Only then will they send the intended encrypted data using an algorithm enabled by the qubit key.

However, while the laws of quantum physics may prevent Eve from copying the intercepted qubit, she may be able to disturb the quantum channel. Alice and Bob will need to continue generating keys and sending them back and forth until she stops interfering. Accidental disturbances that collapse superposition as the photon travels through space also contribute to interference patterns.

A qubit’s information space, limited to two levels, has a low tolerance for these errors.

To solve these problems, quantum communication requires additional dimensions. If we imagine a photon rotating (the way the earth rotates around the sun) and spinning (the way the earth spins on its own axis) in two different directions at once, we get a sense of how the Feng Lab qudits work.

If Eve tries to steal, copy and replace the qudit, she will not be able to extract any information and her tampering will be clear. The message sent will have a much greater tolerance for error—not only for Eve’s interference, but also for accidental flaws introduced as the message travels through space. Alice and Bob will be able to efficiently and securely exchange information.

“There is a lot of concern,” says Feng, “that mathematical encryption, no matter how complex, will become less and less effective because we are advancing so quickly in computing technologies. Quantum communication’s reliance on physical rather than mathematical barriers make it immune to these future threats. It’s more important than ever that we continue to develop and refine quantum communication technologies.”

This research was supported by the US Army Research Office (ARO) (W911NF-19-1-0249 and W911NF-21-1-0148), National Science Foundation (NSF) (ECCS-1932803, ECCS-1842612, OMA-1936276 and PHY-1847240), Defense Advanced Research Projects Agency (DARPA) (W91NF-21-1-0340), Office of Naval Research (ONR) (N00014-20-1-2558) and King Abdullah University of Science & Technology (OSR-2020-CRG9-4374.3). L.F. also acknowledges the support from Sloan Research Fellowship. This work was partially supported by NSF through the University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) (DMR-1720530) and carried out in part at the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under grant NNCI-1542153.


Source: Devorah Fischler, University of Pennsylvania 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire