MIT Researchers Use Supercomputer to Analyze Web Traffic Across Entire Internet

October 28, 2019

Oct. 28, 2019 — Using a supercomputing system, MIT researchers have developed a model that captures what web traffic looks like around the world on a given day, which can be used as a measurement tool for internet research and many other applications.

Using a supercomputing system, MIT researchers developed a model that captures what global web traffic could look like on a given day, including previously unseen isolated links (left) that rarely connect but seem to impact core web traffic (right). Image courtesy of the researchers, edited by MIT News.

Understanding web traffic patterns at such a large scale, the researchers say, is useful for informing internet policy, identifying and preventing outages, defending against cyberattacks, and designing more efficient computing infrastructure. A paper describing the approach was presented at the recent IEEE High Performance Extreme Computing Conference.

For their work, the researchers gathered the largest publicly available internet traffic dataset, comprising 50 billion data packets exchanged in different locations across the globe over a period of several years.

They ran the data through a novel “neural network” pipeline operating across 10,000 processors of the MIT SuperCloud, a system that combines computing resources from the MIT Lincoln Laboratory and across the Institute. That pipeline automatically trained a model that captures the relationship for all links in the dataset — from common pings to giants like Google and Facebook, to rare links that only briefly connect yet seem to have some impact on web traffic.

The model can take any massive network dataset and generate some statistical measurements about how all connections in the network affect each other. That can be used to reveal insights about peer-to-peer filesharing, nefarious IP addresses and spamming behavior, the distribution of attacks in critical sectors, and traffic bottlenecks to better allocate computing resources and keep data flowing.

In concept, the work is similar to measuring the cosmic microwave background of space, the near-uniform radio waves traveling around our universe that have been an important source of information to study phenomena in outer space. “We built an accurate model for measuring the background of the virtual universe of the Internet,” says Jeremy Kepner, a researcher at the MIT Lincoln Laboratory Supercomputing Center and an astronomer by training. “If you want to detect any variance or anomalies, you have to have a good model of the background.”

Joining Kepner on the paper are: Kenjiro Cho of the Internet Initiative Japan; KC Claffy of the Center for Applied Internet Data Analysis at the University of California at San Diego; Vijay Gadepally and Peter Michaleas of Lincoln Laboratory’s Supercomputing Center; and Lauren Milechin, a researcher in MIT’s Department of Earth, Atmospheric and Planetary Sciences.

Breaking up data

In internet research, experts study anomalies in web traffic that may indicate, for instance, cyber threats. To do so, it helps to first understand what normal traffic looks like. But capturing that has remained challenging. Traditional “traffic-analysis” models can only analyze small samples of data packets exchanged between sources and destinations limited by location. That reduces the model’s accuracy.

The researchers weren’t specifically looking to tackle this traffic-analysis issue. But they had been developing new techniques that could be used on the MIT SuperCloud to process massive network matrices. Internet traffic was the perfect test case.

Networks are usually studied in the form of graphs, with actors represented by nodes, and links representing connections between the nodes. With internet traffic, the nodes vary in sizes and location. Large supernodes are popular hubs, such as Google or Facebook. Leaf nodes spread out from that supernode and have multiple connections to each other and the supernode. Located outside that “core” of supernodes and leaf nodes are isolated nodes and links, which connect to each other only rarely.

Capturing the full extent of those graphs is infeasible for traditional models. “You can’t touch that data without access to a supercomputer,” Kepner says.

In partnership with the Widely Integrated Distributed Environment (WIDE) project, founded by several Japanese universities, and the Center for Applied Internet Data Analysis (CAIDA), in California, the MIT researchers captured the world’s largest packet-capture dataset for internet traffic. The anonymized dataset contains nearly 50 billion unique source and destination data points between consumers and various apps and services during random days across various locations over Japan and the U.S., dating back to 2015.

Before they could train any model on that data, they needed to do some extensive preprocessing. To do so, they utilized software they created previously, called Dynamic Distributed Dimensional Data Mode (D4M), which uses some averaging techniques to efficiently compute and sort “hypersparse data” that contains far more empty space than data points. The researchers broke the data into units of about 100,000 packets across 10,000 MIT SuperCloud processors. This generated more compact matrices of billions of rows and columns of interactions between sources and destinations.

Capturing outliers

But the vast majority of cells in this hypersparse dataset were still empty. To process the matrices, the team ran a neural network on the same 10,000 cores. Behind the scenes, a trial-and-error technique started fitting models to the entirety of the data, creating a probability distribution of potentially accurate models.

Then, it used a modified error-correction technique to further refine the parameters of each model to capture as much data as possible. Traditionally, error-correcting techniques in machine learning will try to reduce the significance of any outlying data in order to make the model fit a normal probability distribution, which makes it more accurate overall. But the researchers used some math tricks to ensure the model still saw all outlying data — such as isolated links — as significant to the overall measurements.

In the end, the neural network essentially generates a simple model, with only two parameters, that describes the internet traffic dataset, “from really popular nodes to isolated nodes, and the complete spectrum of everything in between,” Kepner says.

The researchers are now reaching out to the scientific community to find their next application for the model. Experts, for instance, could examine the significance of the isolated links the researchers found in their experiments that are rare but seem to impact web traffic in the core nodes.

Beyond the internet, the neural network pipeline can be used to analyze any hypersparse network, such as biological and social networks. “We’ve now given the scientific community a fantastic tool for people who want to build more robust networks or detect anomalies of networks,” Kepner says. “Those anomalies can be just normal behaviors of what users do, or it could be people doing things you don’t want.”


Source: Rob Matheson, MIT 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This